Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 131987, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705337

ABSTRACT

Herein, a polymer-based bioadsorbent was prepared by cross-linking chitosan to filter mud and magnetic pectin (Ch-mPC@FM) for the removal of Bismark Brown R dye (BB-R) from wastewater. Morphological characterization analysis indicated that Ch-mPC@FM had a higher surface area and better pore structure than its components. The Artificial Neuron Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were employed to evaluate the simulation and prediction of the adsorption process based on input variables like temperature, pH, dosage, initial BB-R dye concentration, and contact time. ANFIS and ANN demonstrated significant modeling and predictive accuracy, with R2 > 0.93 and R2 > 0.96, and root mean square error < 0.023 and <0.020, respectively. The Langmuir isotherm and the pseudo-second-order kinetic models provided the best fits to the equilibrium and kinetic data. The thermodynamic assessment showed spontaneous and endothermic adsorption with average entropy and enthalpy changes of 119.32 kJ mol-1 K and 403.47 kJ mol-1, respectively. The study of BB-R dye adsorption on Ch-mPC@FM revealed multiple mechanisms, including electrostatic, complexation, pore filling, cation-π interaction, hydrogen bonding, and π-π interactions. The approximate production cost of US$ 5.809 Kg-1 and excellent adsorption capability render Ch-mPC@FM an inexpensive, pragmatic, and ecologically safe bioadsorbent for BB-R dye removal from wastewater.


Subject(s)
Chitosan , Pectins , Water Pollutants, Chemical , Chitosan/chemistry , Pectins/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Thermodynamics , Coloring Agents/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Temperature , Wastewater/chemistry , Neural Networks, Computer , Filtration/methods
2.
Environ Sci Pollut Res Int ; 30(59): 123126-123147, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979110

ABSTRACT

The uncontrolled utilization of pesticides poses a significant risk to the environment and human health, making its management essential. In this regard, a new arginine functionalized magnetic Mn-based metal-organic framework (Arg@m-Mn-MOF) was fabricated and assessed for the removal of cypermethrin (CYP) and chlorpyrifos (CHL) from aqueous system. The Arg@m-Mn-MOF was characterized by scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. Various parameters were optimized in a series of batch experiments and the following conditions were found optimal: pH: 4 and 5, contact time: 20 min, adsorbent dosage: 0.6 and 0.8 g L-1 with initial concentration: 10 mg L-1 and temperature: 298 K for CYP and CHL, respectively. The composite attained a maximum removal capacity of 44.84 and 71.42 mg g-1 for CYP and CHL, respectively. The elucidated data was strongly fitted to the pseudo-second-order model of kinetics (R2 > 0.98) and Langmuir isotherm (R2 > 0.98). Based upon 350 experimental datasets obtained from batch studies and interpolated data, the adsorption capacity of the adsorbent was elucidated with R2 > 0.97 (CHL) and > 0.91 (CYP). The adsorption energy (- 11.67 kcal mol-1) calculated by Gaussian software suggests a good interaction between arginine and CHL through H-bonding. The present study's findings suggested the prepared Arg@m-Mn-MOF as a promising adsorbent for the efficient removal of pesticides from agriculture runoff.


Subject(s)
Metal-Organic Frameworks , Pesticides , Water Pollutants, Chemical , Adsorption , Density Functional Theory , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Metal-Organic Frameworks/chemistry , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
3.
J Appl Microbiol ; 134(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37197912

ABSTRACT

The unrestricted utilization of xenobiotic compounds has sparked widespread concern by the world's growing population. A synthetic pyrethroid called cypermethrin (CP) is commonly utilized as an insecticide in horticulture, agriculture, and pest control. The high toxicity levels of accumulated CP have prompted environmental concerns; it damages soil fertility, and an ecosystem of essential bacteria, and causes allergic reactions and tremors in humans by affecting their nervous systems. The damage caused by CP to groundwater, food, and health makes it imperative that new effective and sustainable alternatives are investigated. Microbial degradation has been established as a reliable technique for mineralizing CP into less toxic chemicals. Among the many enzymes produced by bacteria, carboxylesterase enzymes are determined to be the most efficient in the CP breakdown process. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) have been reported as the best methods for determining CP and its metabolized products, with detection limits as low as ppb from diverse environmental samples. The current study describes the ecotoxicological impact of CP and innovative analytical techniques for their detection. The newly isolated CP-degrading bacterial strains have been evaluated in order to develop an efficient bioremediation strategy. The proposed pathways and the associated critical enzymes in the bacterial mineralization of CP have also been highlighted. Additionally, the strategic action to control CP toxicity has been discussed.


Subject(s)
Insecticides , Pyrethrins , Humans , Ecosystem , Pyrethrins/chemistry , Pyrethrins/metabolism , Insecticides/metabolism , Gas Chromatography-Mass Spectrometry , Biodegradation, Environmental , Bacteria/metabolism
4.
Biodegradation ; 33(6): 529-556, 2022 12.
Article in English | MEDLINE | ID: mdl-36227389

ABSTRACT

Microplastics (MPs) have sparked widespread concern due to their non-degradable and persistent nature in ecosystems. Long-term exposure to microplastics can cause chronic toxicity, including impaired reproduction and malnutrition, threatening biota and humans. Microplastics can also cause ingestion, choking, and entanglement in aquatic populations. Thus, it is crucial to establish remarkably effective approaches to diminish MPs from the environment. In this regard, using fungi for microplastic degradation is beneficial owing to its diverse nature and effective enzymatic system. Extracellular and intracellular enzymes in fungi degrade the plastic polymers into monomers and produce carbon dioxide and water under aerobic conditions whereas methane under anaerobic conditions. Further, fungi also secrete hydrophobins (surface proteins) which serve as a crucial aid in the bioremediation process by promoting substrate mobility and bioavailability. Therefore, the present review provides insight into the mechanism and general pathway of fungal-mediated microplastic degradation. Additionally, analytical techniques for the monitoring of MPs degradation along with the roadblocks and future perspectives have also been discussed. However, more research is required to fully perceive the underlying process of microplastic biodegradation in the environment using fungus, to establish an effective and sustainable practice for its management.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ecosystem , Carbon Dioxide , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Water , Methane
5.
Environ Res ; 214(Pt 2): 113844, 2022 11.
Article in English | MEDLINE | ID: mdl-35843281

ABSTRACT

A bionanocomposite comprising of magnetic chitosan doped with algae isolated from native habitat was fabricated and utilized as an efficient adsorbent for the removal of hazardous azo dyes, namely, Direct Red 31 (DR31) and Direct Red 28 (DR28). The algal doped magnetic chitosan (Alg@mCS) was comprehensively characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD), and Brunauer-Emmett-Teller (BET). On the sorption of dyes, the influence of various process variables such as pH, adsorbent dosage, contact time, temperature, and initial dyes concentration were addressed. The adsorbent demonstrated maximal removal of DR31 and DR28 at pH 5 and 3, respectively. The maximum adsorption capacity of DR31 and DR28 was observed at Alg@mCS dose of 0.6 g L-1 and 7 g L-1 in 10 and 20 min, respectively. The Redlich Peterson isotherm model was shown to be appropriate for dye adsorption, indicating monolayer coverage of the dyes on the adsorbent surface (R2 > 0.99). The adsorption process followed pseudo-second-order kinetics (R2 > 0.99). Based on 320 experimental datasets from batch studies and interpolated data, adaptive neuro-fuzzy inference system (ANFIS) models were utilized to estimate dye elimination (percent). A number of parameters were calculated to validate the model's applicability. The Alg@mCS was proven to be a useful adsorbent for eliminating toxic and harmful azo dyes from aqueous solutions.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Azo Compounds/chemistry , Chitosan/chemistry , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 29(53): 80088-80108, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35672648

ABSTRACT

In the present investigation, a biocomposite, magnetic carbon nanodot immobilized Bacillus pseudomycoides MH229766 (MCdsIB) was developed and consequently characterized using SEM-EDX, FTIR, XRD, and VSM analyses to effectively biotreat hazardous Congo red (CR) dye present in water bodies. The adsorptive efficiency of MCdsIB for the detoxification of CR from wastewater was investigated both in batch and column schemes. Optimum batch parameters were found as pH 3, 50 mg L-1 dye concentration, 150 min equilibrium time, and 2 g L-1 MCdsIB dosage. The Freundlich isotherm model best fit the experimental data, and the maximum adsorption capacity of MCdsIB was observed as 149.25 mg g-1. Kinetic data were in accordance with the pseudo-second-order model where the adsorption rate reduced with the rise in the initial concentration of dye. Intra-particle diffusion was discovered as the rate-limiting step following 120 min of the adsorption process. Furthermore, despite being used continually for five consecutive cycles, MCdsIB demonstrated excellent adsorption capacity (> 85 mg g-1), making it an outstanding recyclable material. The CR dye was efficiently removed in fixed-bed continuous column studies at high influent CR dye concentration, low flow rate, and high adsorbent bed height, wherein the Thomas model exhibited an excellent fit with the findings acquired in column experiments. To summarize, the current study revealed the effectiveness of MCdsIB as a propitious adsorbent for CR dye ouster from wastewater.


Subject(s)
Congo Red , Water Pollutants, Chemical , Congo Red/chemistry , Wastewater , Carbon , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Adsorption , Kinetics , Water , Magnetic Phenomena
7.
Natl J Maxillofac Surg ; 9(2): 232-234, 2018.
Article in English | MEDLINE | ID: mdl-30546242

ABSTRACT

Odontomas are usually one of the most common odontogenic tumors of the jaw and are perhaps more accurately defined as a hamartoma than a true neoplasm. It is asymptomatic, nonaggressive, slow growing, and benign nature. They are considered to be the malformations of the dental tissue and can sometimes interfere with the eruption of the associated tooth leading to its impaction or delayed eruption. Complex odontomas in primary teeth are rare and unusually diagnosed before the second decade of life. This article aims to present the case of a child with complex odontoma and its effective treatment planning. The results indicate that early diagnosis and proper treatment planning can ensure a better prognosis and can prevent later craniofacial complications and other developmental problems.

8.
Niger J Surg ; 22(2): 81-85, 2016.
Article in English | MEDLINE | ID: mdl-27843270

ABSTRACT

BACKGROUND: In patients undergoing head and neck surgery for various pathologic conditions, implants are one of the best restorative options and are increasing widely used. Therefore, we evaluated the success of dental implants in the irradiated jaws of patients following treatment of oral cancer oral cancer treated patients. MATERIALS AND METHODS: Data of oral cancer treated patients was collected retrospectively from 2002 to 2008. We took 46 oral cancer treated patients in which implants were placed in irradiated jaws for rehabilitation. RESULTS: It was found that out of 162 dental implants placed, 52 failed. Furthermore, there was no variation in the implant survival rate in between both the jaws. Radiation dose of <50 Gy units also showed significantly increased amount of implant survival rate. CONCLUSIONS: Implant survival is multifactorial and depends upon a number of factors like level of radiation exposure in that area, time gap between last radiation doses etc., Further research is required in this field to improve the esthetics and quality of life of cancer treated patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...