Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosoma ; 133(1): 5-14, 2024 01.
Article in English | MEDLINE | ID: mdl-38265456

ABSTRACT

Genome sequencing has identified hundreds of histone post-translational modifications (PTMs) that define an open or compact chromatin nanostructure at the level of nucleosome proximity, and therefore serve as activators or repressors of gene expression. Direct observation of this epigenetic mode of transcriptional regulation in an intact single nucleus, is however, a complex task. This is because despite the development of fluorescent probes that enable observation of specific histone PTMs and chromatin density, the changes in nucleosome proximity regulating gene expression occur on a spatial scale well below the diffraction limit of optical microscopy. In recent work, to address this research gap, we demonstrated that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between fluorescently labelled histones core to the nucleosome, is a readout of chromatin nanostructure that can be multiplexed with immunofluorescence (IF) against specific histone PTMs. Here from application of this methodology to gold standard gene activators (H3K4Me3 and H3K9Ac) versus repressors (e.g., H3K9Me3 and H3K27Me), we find that while on average these histone marks do impart an open versus compact chromatin nanostructure, at the level of single chromatin foci, there is significant spatial heterogeneity. Collectively this study illustrates the importance of studying the epigenetic landscape as a function of space within intact nuclear architecture and opens the door for the study of chromatin foci sub-populations defined by combinations of histone marks, as is seen in the context of bivalent chromatin.


Subject(s)
Chromatin , Histones , Chromatin/genetics , Histones/metabolism , Nucleosomes , Fluorescence Resonance Energy Transfer , Protein Processing, Post-Translational , Transcription Factors/genetics , Epigenesis, Genetic
2.
Biophys J ; 121(11): 2152-2167, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35490296

ABSTRACT

Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.


Subject(s)
Cell Nucleus , Nuclear Proteins , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/metabolism , Diffusion , Nuclear Proteins/metabolism
3.
Front Genet ; 12: 770081, 2021.
Article in English | MEDLINE | ID: mdl-34956323

ABSTRACT

A DNA double-strand break (DSB) takes place in the context of chromatin, and there is increasing evidence for chromatin structure to play a functional role in DSB signaling and repair. Thus, there is an emerging need for quantitative microscopy methods that can directly measure chromatin network architecture and detect changes in this structural framework upon DSB induction within an intact nucleus. To address this demand, here we present the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between fluorescently labeled histones in the DSB inducible via AsiSI cell system (DIvA), which has sufficient spatial resolution to map nuclear-wide chromatin compaction at the level of nucleosome proximity with respect to multiple site-specific DSBs. We also demonstrate that when phasor histone FLIM-FRET is coupled with immunofluorescence, this technology has the unique advantage of enabling exploration of any heterogeneity that exists in chromatin structure at the spatially distinct and genetically induced DSBs.

4.
Nat Commun ; 11(1): 5776, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188174

ABSTRACT

Tumor suppressor p53-binding protein 1 (53BP1) is a DNA repair protein essential for the detection, assessment, and resolution of DNA double strand breaks (DSBs). The presence of a DSB is signaled to 53BP1 via a local histone modification cascade that triggers the binding of 53BP1 dimers to chromatin flanking this type of lesion. While biochemical studies have established that 53BP1 exists as a dimer, it has never been shown in a living cell when or where 53BP1 dimerizes upon recruitment to a DSB site, or upon arrival at this nuclear location, how the DSB histone code to which 53BP1 dimers bind regulates retention and self-association into higher-order oligomers. Thus, here in live-cell nuclear architecture we quantify the spatiotemporal dynamics of 53BP1 oligomerization during a DSB DNA damage response by coupling fluorescence fluctuation spectroscopy (FFS) with the DSB inducible via AsiSI cell system (DIvA). From adopting this multiplexed approach, we find that preformed 53BP1 dimers relocate from the nucleoplasm to DSB sites, where consecutive recognition of ubiquitinated lysine 15 of histone 2A (H2AK15ub) and di-methylated lysine 20 of histone 4 (H4K20me2), leads to the assembly of 53BP1 oligomers and a mature 53BP1 foci structure.


Subject(s)
DNA Breaks, Double-Stranded , Protein Multimerization , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Nucleus/metabolism , DNA Repair , Green Fluorescent Proteins/metabolism , Histone Code , Models, Biological , Spectrometry, Fluorescence , Time Factors
5.
Biochem Soc Trans ; 47(4): 1117-1129, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31278154

ABSTRACT

Nuclear architecture is fundamental to the manner by which molecules traverse the nucleus. The nucleoplasm is a crowded environment where dynamic rearrangements in local chromatin compaction locally redefine the space accessible toward nuclear protein diffusion. Here, we review a suite of methods based on fluorescence fluctuation spectroscopy (FFS) and how they have been employed to interrogate chromatin organization, as well as the impact this structural framework has on nuclear protein target search. From first focusing on a set of studies that apply FFS to an inert fluorescent tracer diffusing inside the nucleus of a living cell, we demonstrate the capacity of this technology to measure the accessibility of the nucleoplasm. Then with a baseline understanding of the exploration volume available to nuclear proteins during target search, we review direct applications of FFS to fluorescently labeled transcription factors (TFs). FFS can detect changes in TF mobility due to DNA binding, as well as the formation of TF complexes via changes in brightness due to oligomerization. Collectively, we find that FFS-based methods can uncover how nuclear proteins in general navigate the nuclear landscape.


Subject(s)
Microscopy/methods , Nuclear Proteins/metabolism , Spectrometry, Fluorescence/methods , Biophysical Phenomena , Cell Nucleus/metabolism , DNA/chemistry , DNA/genetics , Green Fluorescent Proteins/metabolism , Humans , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...