Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31902528

ABSTRACT

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Subject(s)
Brain/metabolism , Cholesterol/metabolism , Macrophages/metabolism , Membrane Glycoproteins/genetics , Microglia/metabolism , Myelin Sheath/metabolism , Phagocytosis/genetics , Receptors, Immunologic/genetics , Acetyl-CoA C-Acetyltransferase/antagonists & inhibitors , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cholesterol Esters/metabolism , Disease Models, Animal , Flow Cytometry , Humans , Induced Pluripotent Stem Cells , Lipid Metabolism/genetics , Lipidomics , Liver X Receptors/agonists , Mice , Mice, Knockout , Mice, Knockout, ApoE , RNA-Seq
2.
Sci Rep ; 7: 44249, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28281673

ABSTRACT

Assessing BACE1 (ß-site APP cleaving enzyme 1) knockout mice for general health and neurological function may be useful in predicting risks associated with prolonged pharmacological BACE1 inhibition, a treatment approach currently being developed for Alzheimer's disease. To determine whether BACE1 deletion-associated effects in mice generalize to another species, we developed a novel Bace1-/- rat line using zinc-finger nuclease technology and compared Bace1-/- mice and rats with their Bace1+/+ counterparts. Lack of BACE1 was confirmed in Bace1-/- animals from both species. Removal of BACE1 affected startle magnitude, balance beam performance, pain response, and nerve myelination in both species. While both mice and rats lacking BACE1 have shown increased mortality, the increase was smaller and restricted to early developmental stages for rats. Bace1-/- mice and rats further differed in body weight, spontaneous locomotor activity, and prepulse inhibition of startle. While the effects of species and genetic background on these phenotypes remain difficult to distinguish, our findings suggest that BACE1's role in myelination and some sensorimotor functions is consistent between mice and rats and may be conserved in other species. Other phenotypes differ between these models, suggesting that some effects of BACE1 inhibition vary with the biological context (e.g. species or background strain).


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Gene Deletion , Reflex, Startle/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Body Weight/genetics , Body Weight/physiology , Humans , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Motor Activity/physiology , Prepulse Inhibition/genetics , Prepulse Inhibition/physiology , Rats , Reflex, Startle/physiology , Species Specificity
3.
Sci Transl Med ; 4(164): 164ra161, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23241745

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser(1292) occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser(1292) autophosphorylation. Mutation of Ser(1292) to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser(1292) as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser(1292) autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser(1292) autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.


Subject(s)
Mutation/genetics , Parkinson Disease/enzymology , Parkinson Disease/pathology , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Binding Sites , Brain/drug effects , Brain/enzymology , Brain/pathology , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Microtubules/drug effects , Microtubules/metabolism , Mutant Proteins/metabolism , Neurites/drug effects , Neurites/metabolism , Parkinson Disease/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Transport/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL