Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Digit Health J ; 4(1): 1-8, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36865582

ABSTRACT

Background: The QT interval in the electrocardiogram (ECG) is a fundamental risk measure for arrhythmic adverse cardiac events. However, the QT interval depends on the heart rate and must be corrected accordingly. The present QT correction (QTc) methods are either simple models leading to under- or overcorrection, or impractical in requiring long-term empirical data. In general, there is no consensus on the best QTc method. Objective: We introduce a model-free QTc method-AccuQT-that computes QTc by minimizing the information transfer from R-R to QT intervals. The objective is to establish and validate a QTc method that provides superior stability and reliability without models or empirical data. Methods: We tested AccuQT against the most commonly used QT correction methods by using long-term ECG recordings of more than 200 healthy subjects from PhysioNet and THEW databases. Results: AccuQT overperforms the previously reported correction methods: the proportion of false-positives is reduced from 16% (Bazett) to 3% (AccuQT) for the PhysioNet data. In particular, the QTc variance is significantly reduced and thus the RR-QT stability is increased. Conclusion: AccuQT has significant potential to become the QTc method of choice in clinical studies and drug development. The method can be implemented in any device recording R-R and QT intervals.

2.
Phys Rev Lett ; 122(6): 064102, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822076

ABSTRACT

Motivated by electronic transport in graphenelike structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional periodic Lorentz gas are replaced by soft repulsive scatterers. A thorough computational analysis yields both normal and anomalous (super)diffusion with an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose existence is characterized by tonguelike structures in parameter space. These results hold even for small softness, showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...