Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Insects ; 15(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535365

ABSTRACT

"Calling behaviour" is a stereotyped rhythmic motor pattern displayed by female moths, by which they emit the sex pheromone to attract of conspecific males. Calling occurs through a squeezing mechanism based on the turtleneck-like folding and unfolding of the ovipositor cuticle during its telescopic extensions and retractions. This mechanism is under the control of the terminal abdominal ganglion (TAG). By combining anatomical and electrophysiological approaches, here we studied the morpho-functional organisation of the abdominal muscles and the activity of motoneurons from TAG nerve N4-N6 as correlated to the ovipositor movements during calling in the female spongy moth Lymantria dispar. Our results show that the three abdominal segments S7, S8 and S9 (ovipositor) are highly specialized structures containing cuticular appendages, hinges, apodemes and several large muscles, innervated by N4 and especially by N5. N6 mainly innervates the oviductal tract. We also identified a number of motor units from N4 and N5, the spike activity of which is correlated with the ovipositor movements during calling. In conclusion, the release of sex pheromones in the female spongy moth is obtained by extensions and retractions of the ovipositor operated by a coordinated motor program, which is mainly sustained by the activity of a few motor units under the control of TAG nerves N4 and N5.

2.
Life (Basel) ; 13(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37511884

ABSTRACT

Sea urchins rely on chemical senses to localize suitable food resources, therefore representing model species for chemosensory studies. In the present study, we investigated the chemical sensitivity of the Mediterranean sea urchin Paracentrotus lividus to the blue-green alga Aphanizomenon flos-aquae, namely "Klamath", and to a few amino acids chosen from the biochemical composition of the same algae. To this end, we used the "urchinogram" method, which estimates the movement rate of the sea urchins in response to chemicals. Our results showed that Klamath represents a strong chemical stimulus for P. lividus as it elicits an overall movement of spines, pedicellariae, and tube feet coupled, in some cases, to a coordinated locomotion of the animals. Sea urchins also displayed a sensitivity, even if to a lesser extent, to leucine, threonine, arginine, and proline, thus implying that the amino acids contained in Klamath may account, at least in part, for the stimulating effects exerted by the whole algae. Additionally, our results show that Klamath, as well as spirulina, another blue-green alga with high nutritional value, is very attractive for this sea urchin species. These findings gain further importance considering the potential profit of echinoderms for commercial consumers and their growing role in aquaculture. Klamath and spirulina combine high nutritional profiles with attractive and stimulating abilities and may be considered potential valuable feed supplements in sea urchin aquaculture.

3.
J Exp Biol ; 224(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34761803

ABSTRACT

The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to complement, with a direct approach, current ablation or silencing techniques.


Subject(s)
Astacoidea , Chemoreceptor Cells , Animals , Extremities , Leg , Locomotion , Reflex
4.
Arch Insect Biochem Physiol ; 104(3): e21669, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32190926

ABSTRACT

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive, destructive crop pest that originated in South East Asia. D. suzukii recently invaded Western countries and is threatening both European and American fruit industries. It is extremely attracted to otherwise undamaged, ripening fruits, unlike most other Drosophila species that attack only decaying or rotten fruits. Recent studies on different insect species showed that several naturally occurring compounds of easy market availability showing deterrent action may be used to supplement mass catches with food traps. Based on these considerations, the aim of the present work was to test the effects of some natural compounds (alone or in the mixture) on the olfactory system of the D. suzukii and the behavioral responses evoked. We measured by electroantennogram (EAG) recordings, the olfactory sensitivity of antennae to increasing concentrations of eugenol, vanillin, menthol, cis-jasmone; eugenol + vanillin, +menthol, +cis-jasmone; vanillin + menthol, +cis-jasmone. In addition, the behavioral responses to the same compounds and mixtures were evaluated. Our electrophysiological results show a dose-response relationship between the EAG amplitudes and the increasing concentrations of the olfactory compound. The behavioral results show that the number of laid eggs is significantly different between the standard diet and the standard diet + natural compound. These results underline a specificity in the olfactory sensitivity and in the ovipositing behavior of D. suzukii females; also, they could be valuable for the identification of key chemicals aimed at the future development of strategies in the management and control of this harmful insect for crops.


Subject(s)
Drosophila/drug effects , Oviposition/drug effects , Smell , Animals , Arthropod Antennae/drug effects , Behavior, Animal/drug effects , Benzaldehydes , Cyclopentanes , Dose-Response Relationship, Drug , Drosophila/physiology , Electrophysiological Phenomena , Eugenol , Feeding Behavior , Female , Insect Repellents , Menthol , Odorants , Oxylipins
5.
FASEB J ; 33(10): 11028-11034, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31291788

ABSTRACT

Oxidative stress is commonly observed in both idiopathic and genetic cases of Parkinson's disease (PD). It plays an important role in the degeneration of dopaminergic neurons, and it has been associated with altered telomere length (TL). There is currently no cure for PD, and extracts of antioxidative plant, such as Mucuna pruriens and Withania somnifera, are commonly used in Ayurveda to treat patients with PD. In this study, we evaluated 2 enzymatic markers of oxidative stress, glutathione (GSH) system and superoxide dismutase (SOD), and TL in a Drosophila melanogaster model for PD [phosphatase and tensin homolog-induced putative kinase 1 (PINK1)B9]. This evaluation was also performed after treatment with the phytoextracts. PINK1B9 mutants showed a decrease in GSH amount and SOD activity and unexpected longer telomeres compared with wild-type flies. M. pruriens treatment seemed to have a beneficial effect on the oxidative stress conditions. On the other hand, W. somnifera treatment did not show any improvements in the studied oxidative stress mechanisms and even seemed to favor the selection of flies with longer telomeres. In summary, our study suggests the importance of testing antioxidant phytoextracts in a PINK1B9 model to identify beneficial effects for PD.-Baroli, B., Loi, E., Solari, P., Kasture, A., Moi, L., Muroni, P., Kasture, S., Setzu, M. D., Liscia, A., Zavattari, P. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease Drosophila PINK1B9 model.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Plant Extracts/pharmacology , Animals , Disease Models, Animal , Drosophila melanogaster/metabolism , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Parkinson Disease/genetics , Protein Kinases/drug effects , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/metabolism
6.
J Insect Physiol ; 111: 32-40, 2018.
Article in English | MEDLINE | ID: mdl-30393142

ABSTRACT

Despite its great potentiality, little attention has been paid to modelling gastrointestinal symptoms of Parkinson's disease (PD) in Drosophila melanogaster (Dm). Our previous studies on standardized Mucuna pruriens extract (Mpe) have shown usefulness in the Drosophila model of PD. In this communication, we provide new information on the effect of Mpe on basal and serotonin treated contractions in the crop (i.e., an important and essential part of the gut) in Drosophila PD mutant for PTEN-induced putative kinase 1 (PINK1B9) gene. The effect of Mpe on PINK1B9 supplied with standard diet to larvae and/or adults, were assayed on 10-15 days old flies. Conversely from what we observed in the wild type flies, recordings demonstrated that exogenous applications of serotonin on crop muscles of untreated PINK1B9 affect neither the frequency nor the amplitude of the crop contraction, while the same muscle parameters are enhanced following brain injections of serotonin, thus suggesting that PINK1B9 mutants may likely have an impairment in the serotonergic pathways. Also, the mitochondrial morphology in the crop muscles is strongly compromised, as demonstrated by the transmission electron microscopy analysis. The Mpe treatment rescued the crop muscle parameters and also the mitochondrial morphology when supplied to both larvae and adults. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the gastrointestinal symptoms in PD and also confirms the useful employment of M. pruriens for PD treatment.


Subject(s)
Digestive System/drug effects , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Mucuna/chemistry , Muscle Contraction/drug effects , Parkinson Disease/drug therapy , Plant Extracts/pharmacology , Protein Serine-Threonine Kinases/metabolism , Animals , Digestive System/physiopathology , Digestive System/ultrastructure , Disease Models, Animal , Drosophila melanogaster/physiology , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/ultrastructure , Parkinson Disease/physiopathology
7.
Arch Insect Biochem Physiol ; 99(4): e21508, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30302815

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824; Diptera: Tephritidae), is a polyphagous pest in horticulture, mainly targeting Citrus fruits. Natural essential and fixed oils are currently under investigation for their broad-spectrum in pest control. To gain better knowledge about medfly behavior and biochemistry, we examined with behavioral and biochemical assays, the effects on C. capitata from six natural fixed oils obtained from vegetable (five) or animal (one) matrices using the eco-friendly supercritical CO 2 extraction. Oils were obtained at 250/300 bar and 40°C from the seeds of Laurus nobilis and Citrus paradisi, the fruits of Myristica fragrans and Pistacia terebinthus, wheat germ, and mullet roes (marine oil). Behavioral experiments were performed by means of two-choice tests to analyze the oil attractant effect compared with control (water or standard diet). The fatty acid composition of oils and the total lipid and fatty acid profile of medflies were characterized by chromatographic techniques. Behavioral bioassays showed that fixed oil obtained from M. fragrans (nutmeg butter) was more attractive than other oils. Medflies fed (24 hr) on marine oil showed significant changes in the total lipid and fatty acid profile induced by oil ingestion without toxic effects. However, 56% mortality was observed in insects fed on M. fragrans oil and no biochemical changes ascribable to oil ingestion were detected in the medflies that survived. Our results advance knowledge about the behavioral and biochemical response of medflies to fixed oils and will be potentially useful in developing new pest management strategies.


Subject(s)
Ceratitis capitata/physiology , Lipid Metabolism/drug effects , Pheromones/pharmacology , Plant Oils/pharmacology , Animals , Behavior, Animal/drug effects , Plant Oils/chemistry
8.
Sci Rep ; 8(1): 16002, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375462

ABSTRACT

Findings from studies using animal models expressing amyotrophic lateral sclerosis (ALS) mutations in RNA-binding proteins, such as Transactive Response DNA-binding protein-43 (TDP-43), indicate that this protein, which is involved in multiple functions, including transcriptional regulation and pre-mRNA splicing, represents a key candidate in ALS development. This study focuses on characterizing, in a Drosophila genetic model of ALS (TDP-43), the effects of Mucuna pruriens (Mpe) and Withania somnifera (Wse). Electrophysiological and behavioural data in TDP-43 mutant flies revealed anomalous locomotion (i.e. impaired climbing with unexpected hyperactivity) and sleep dysregulation. These features, in agreement with previous findings with a different ALS model, were at least partially, rescued by treatment with Mpe and Wse. In addition, electrophysiological recordings from dorsal longitudinal muscle fibers and behavioral observations of TDP-43 flies exposed to the volatile anaesthetics, diethyl ether or chloroform, showed paradoxical responses, which were normalized upon Mpe or Wse treatment. Hence, given the involvement of some potassium channels in the effects of anaesthetics, our results also hint toward a possible dysregulation of some potassium channels in the ALS-TDP-43 Drosophila model, that might shed new light on future therapeutic strategies pertaining to ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Electrophysiological Phenomena/drug effects , Locomotion/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/physiopathology , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Disease Models, Animal , Drosophila melanogaster , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Motor Neurons/drug effects , Motor Neurons/metabolism , Mutation , Phytochemicals/chemistry , Plant Extracts/chemistry , TDP-43 Proteinopathies/drug therapy
9.
J Insect Physiol ; 110: 23-33, 2018 10.
Article in English | MEDLINE | ID: mdl-30142313

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata Wied., is a worldwide pest of several fruits given its extremely wide host range which includes more than 250 different species of fruits and vegetables. Its high biological potential is mainly due both to its ability to readily adapt to new environments and its high reproductive capacity as it completes multiple generations each year. Since sexually mature males emit a sex pheromone to call both other males for "lekking" and receptive females for mating, many studies have been directed to characterize the chemical composition of the sex pheromone. Besides, the release of sex pheromone appears to be modulated both by mating and time of day. Based on these considerations, we measured the olfactory sensitivity of antennae and palps of C. capitata to six volatiles of the male sex-pheromone: α-farnesene and geranyl acetate (major components), linalool and ß-myrcene (intermediate components), ß-farnesene and 2,3-butanediol (minor/trace components). The electroantennogram (EAG) and electropalpogram (EPG) responses were evaluated in both sexes, at different physiological states (virgin and mated), and at different times of the day (morning and afternoon). The results show that the EAG amplitude values in response to all stimuli are higher in the morning than in the afternoon for both sexes and in both virgin and mated insects. Furthermore, in both sexes, the olfactory sensitivity of virgin insects is higher than in mated ones. The EPG amplitude in response to all stimuli is higher in the morning in mated females than in virgin females and higher in the morning than in the afternoon in both mated sexes. By gaining knowledge on the effects of sex, physiological state and time of day on the olfactory sensitivity of C. capitata, one could better understand the medfly reproductive behavior.


Subject(s)
Ceratitis capitata/physiology , Sex Attractants/pharmacology , Smell , Animals , Circadian Rhythm , Electrophysiology , Female , Male , Sex Attractants/chemistry , Sexual Behavior, Animal/physiology
10.
Insect Sci ; 25(5): 797-808, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29473996

ABSTRACT

A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV-VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine-dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.


Subject(s)
Animal Communication , Moths/physiology , Octopamine/metabolism , Animals , Female , Motor Neurons/physiology , Sex Attractants/metabolism
11.
Biol Bull ; 232(2): 110-122, 2017 04.
Article in English | MEDLINE | ID: mdl-28654334

ABSTRACT

Shrimp are an essential ecological component of marine ecosystems, and have commercial importance for human consumption and aquaculture. Like other decapod crustaceans, shrimp rely on chemical senses to detect and localize food resources by means of chemosensilla that are located mainly on the cephalothoracic appendages. Using the shrimp Palaemon adspersus, a model organism with omnivorous feeding behavior, we aimed to provide comparative information on the role of aesthetascs, antennular sensilla, and flicking behavior in food detection. To this end, we examined i) the morphology of antennular sensilla by field emission scanning electron microscopy, ii) the shrimp's sensitivity to a number of food-related compounds (amino acids and sugars) by means of whole-animal bioassays, and iii) the contribution of the aesthetasc sensilla to food detection. Our results showed that, aside from the aesthetascs, only three other main morphotypes of setae with chemoreceptive features were present in the antennules, thus accounting for relatively simple sensillar equipment. Nevertheless, we found broad-spectrum sensitivity of the shrimp to a number of amino acids (i.e., isoleucine, leucine, methionine, phenylalanine, glycine, tryptophan, cysteine, and tyrosine) and carbohydrates (trehalose, maltose, cellobiose, and fructose) that was consistent with the omnivorous or scavenging habits of the animal. Although aesthetasc ablation attenuated flicking behavior in a chemical stimulus-independent manner, success in detection and short-range localization of food did not rely on the presence of aesthetasc sensilla. This finding confirms the existence of a non-aesthetasc alternative pathway for feeding, with functional redundancy in simple generalist feeder models such as shrimp.


Subject(s)
Palaemonidae/anatomy & histology , Palaemonidae/physiology , Amino Acids/pharmacology , Animals , Arthropod Antennae/metabolism , Arthropod Antennae/ultrastructure , Dietary Sucrose/pharmacology , Feeding Behavior/physiology , Microscopy, Electron, Scanning , Palaemonidae/drug effects , Palaemonidae/ultrastructure , Sensilla/ultrastructure
12.
J Insect Physiol ; 99: 47-57, 2017 05.
Article in English | MEDLINE | ID: mdl-28242202

ABSTRACT

Papilio hospiton Géné is an oligophagous species, endemic of the islands of Corsica and Sardinia, using various Apiaceae and Rutaceae as host plants, such as Ferula communis, Ferula arrigonii, Peucedanum paniculatum, Ruta lamarmorae and Pastinaca latifolia. We previously found that the lateral maxillary styloconic sensillum in the larva has two deterrent neurons, one phagostimulant and one salt specific, while the medial sensillum has two phagostimulant neurons, one deterrent and one salt specific. In this work we studied the sensitivity of gustatory receptor neurons (GRNs) to saps of F. communis, F. arrigonii, P. paniculatum, P. latifolia and R. lamarmorae and evaluated the relationship between taste sensitivity to different host-plants and larval growth rate on each of them. The spike activity was recorded from medial and lateral taste sensilla stimulated with plant saps, and GRN response patterns were cross compared in the light of a different feeding acceptance. The phagodeterrent GRNs show a higher activity in response to F. arrigonii and R. lamarmorae than to F. communis, P. paniculatum and P. latifolia. Behavioral trials showed that the time to pupation is significantly longer when larvae are reared on F. arrigonii and R. lamarmorae than on the other host-plants. These results suggest that the different activity of the phagodeterrent GRNs may inhibit food acceptance and extend the duration of the larval stage.


Subject(s)
Apiaceae/parasitology , Butterflies/growth & development , Butterflies/physiology , Rutaceae/parasitology , Animals , Apiaceae/chemistry , Feeding Behavior , Larva/growth & development , Larva/physiology , Receptors, Cell Surface/physiology , Rutaceae/chemistry , Sensilla/physiology , Taste/physiology
13.
PLoS One ; 12(3): e0174172, 2017.
Article in English | MEDLINE | ID: mdl-28334024

ABSTRACT

This study showed that in adult Drosophila melanogaster, the type of sugar-either present within the crop lumen or in the bathing solution of the crop-had no effect on crop muscle contraction. What is important, however, is the volume within the crop lumen. Electrophysiological recordings demonstrated that exogenous applications of serotonin on crop muscles increases both the amplitude and the frequency of crop contraction rate, while adipokinetic hormone mainly enhances the crop contraction frequency. Conversely, octopamine virtually silenced the overall crop activity. The present study reports for the first time an analysis of serotonin effects along the gut-brain axis in adult D. melanogaster. Injection of serotonin into the brain between the interocellar area shows that brain applications of serotonin decrease the frequency of crop activity. Based on our results, we propose that there are two different, opposite pathways for crop motility control governed by serotonin: excitatory when added in the abdomen (i.e., directly bathing the crop) and inhibitory when supplied within the brain (i.e., by injection). Finally, our results point to a double brain-gut serotonergic circuitry suggesting that not only the brain can affect gut functions, but the gut can also affect the central nervous system. On the basis of our results, and data in the literature, a possible mechanism for these two discrete serotonergic functions is suggested.


Subject(s)
Brain/drug effects , Digestive System/drug effects , Drosophila melanogaster/drug effects , Insect Hormones/pharmacology , Muscle Contraction/drug effects , Octopamine/pharmacology , Oligopeptides/pharmacology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Serotonin/pharmacology , Animals , Brain/physiology , Digestive System/innervation , Drosophila melanogaster/anatomy & histology , Male , Muscle Contraction/physiology , Pyrrolidonecarboxylic Acid/pharmacology
14.
Sci Rep ; 7: 41059, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102336

ABSTRACT

The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Plant Extracts/therapeutic use , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified/metabolism , Behavior, Animal/drug effects , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Evoked Potentials/drug effects , Ganglia/pathology , Ganglia/ultrastructure , Humans , Longevity/drug effects , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Motor Neurons/metabolism , Mucuna/chemistry , Mucuna/metabolism , Mutagenesis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Superoxide Dismutase-1/genetics , Survival Rate , Transcription Factors/genetics , Transcription Factors/metabolism , Withania/chemistry , Withania/metabolism
15.
Parkinsons Dis ; 2016: 3508073, 2016.
Article in English | MEDLINE | ID: mdl-27648340

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative diseases characterized by the clinical triad: tremor, akinesia, and rigidity. Several studies have suggested that PD patients show disturbances in olfaction as one of the earliest, nonspecific nonmotor symptoms of disease onset. We sought to use the fruit fly Drosophila melanogaster as a model organism to explore olfactory function in LRRK loss-of-function mutants, which was previously demonstrated to be a useful model for PD. Surprisingly, our results showed that the LRRK mutant, compared to the wild flies, presents a dramatic increase in the amplitude of the electroantennogram responses and this is coupled with a higher number of olfactory sensilla. In spite of the above reported results, the behavioural response to olfactory stimuli in mutant flies is impaired compared to that obtained in wild type flies. Thus, behaviour modifications and morphofunctional changes in the olfaction of LRRK loss-of-function mutants might be used as an index to explore the progression of parkinsonism in this specific model, also with the aim of studying and developing new treatments.

16.
Article in English | MEDLINE | ID: mdl-26660070

ABSTRACT

The medfly Ceratitis capitata is one of the most important pests for horticulture worldwide. The knowledge about anatomy and function of the medfly olfactory system is still limited. The first brain structure to process olfactory information in insects is the antennal lobe (AL), which is composed of its functional and morphological units, the olfactory glomeruli. Here, we present a morphological three-dimensional reconstruction of AL glomeruli in adult brains. We used unilateral antennal backfills of olfactory receptor neurons (ORNs) with neural tracers, revealing the AL structure. We recorded confocal stacks acquired from whole-mount specimens, and analyzed them with the software AMIRA. The ALs in C. capitata are organized in glomeruli which are more tightly packed in the anterior part than the posterior one. Axons of ORNs bilaterally connect the ALs through a commissure between the two ALs. This commissure is formed by several distinct fascicles. Contralateral dye transfer suggests the presence of gap junctions connecting ORNs from both antennae. There was no statistical difference between the average volumes of female ALs (204,166 ± 12,554 µm(3)) and of male ALs (190,287 ± 11,823 µm(3)). In most specimens, we counted 53 glomeruli in each AL, seven of which were sexually dimorphic in size.


Subject(s)
Arthropod Antennae/cytology , Ceratitis capitata/anatomy & histology , Neurons/metabolism , Olfactory Receptor Neurons/physiology , Analysis of Variance , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Female , Functional Laterality , Imaging, Three-Dimensional , Male , Microscopy, Confocal , Olfactory Pathways/physiology , Sex Factors , Synapsins/metabolism
17.
J Insect Physiol ; 82: 38-45, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26319532

ABSTRACT

Oogenesis in most adult insects is a nutrient-dependent process involving ingestion of both proteins and carbohydrates that ultimately depends on peripheral input from chemoreceptors. The main goal of this study was to characterize, in the female blowfly Phormia regina, the responsive changes of the labellar chemoreceptors to carbohydrates and proteins in relation to four different stages along the ovarian cycle: (1) immature ovaries, (2) mid-mature ovaries, (3) mature ovaries and ready for egg-laying and (4) post egg-laying ovaries. Then, the possible effects exerted by exogenous serotonin on the chemoreceptor sensitivity profiles were investigated. Our results show that ovary length, width and contraction rate progressively increase from stage 1 to 3, when all these parameters reach their maximum values, before declining in the next stage 4. The sensitivity of the labellar "sugar" chemoreceptors to both sucrose and proteins varies during the ovarian maturation stages, reaching a minimum for sucrose in stage 3, while that to proteins begins. Exogenous 5-HT supply specifically increases the chemoreceptor sensitivity to sugar at the stages 3 and 4, while it does not affect that to proteins. In conclusion, our results provide evidence that in female blowflies the cyclic variations in the sensitivity of the labellar chemosensilla to sugars and proteins are time-related to ovarian development and that during the stages 3 and 4 the responsiveness of the sugar cell to sucrose is under serotonergic control.


Subject(s)
Chemoreceptor Cells/physiology , Diptera/physiology , Serotonin/pharmacology , Animals , Chemoreceptor Cells/drug effects , Diptera/drug effects , Diptera/growth & development , Electrophysiological Phenomena , Female , Oogenesis/physiology , Ovary/growth & development , Ovary/physiology , Proteins/pharmacology , Sucrose/pharmacology
18.
J Insect Physiol ; 74: 45-55, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25702827

ABSTRACT

Herbivorous animals may benefit from the capability to discriminate the taste of bitter compounds since plants produce noxious compounds, some of which toxic, while others are only unpalatable. Our goal was to investigate the contribution of the peripheral taste system in the discrimination of different bitter compounds by an herbivorous insect using the larvae of Papilio hospiton Géné as the experimental model, showing a narrow choice range of host plants. The spike activity from the lateral and medial styloconic sensilla, housing two and one bitter-sensitive gustatory receptor neurons (GRNs), respectively, was recorded following stimulation with nicotine, caffeine, salicin and quercitrin and the time course of the discharges was analyzed. Nicotine and caffeine activated all three bitter-sensitive GRNs, while salicin and quercitrin affected only two of them. In feeding behavior bioassays, intact larvae ate glass-fiber disks moistened with salicin and quercitrin, but rejected those with nicotine and caffeine, while lateral sensillum-ablated insects also ate the disks with the two latter compounds. The capability to discriminate bitter taste stimuli and the neural codes involved are discussed.


Subject(s)
Butterflies/physiology , Action Potentials , Animals , Benzyl Alcohols/pharmacology , Caffeine/pharmacology , Discrimination, Psychological , Feeding Behavior , Food Preferences , Glucosides/pharmacology , Herbivory , Larva/physiology , Neurons/physiology , Nicotine/pharmacology , Quercetin/analogs & derivatives , Quercetin/pharmacology , Receptors, Cell Surface/physiology , Sensilla/physiology , Taste/physiology
19.
J Insect Physiol ; 71: 147-55, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25450427

ABSTRACT

Phote-HrTH (Phormia terraenovae hypertrehalosemic hormone) has been demonstrated in the Diptera to be involved in flight metabolism, reproduction, and diapause. Each of these events needs the hormone's action and requirement for carbohydrates is the common denominator. In Diptera, carbohydrates are taken up during feeding by action of the cibarial pump and are then stored in the crop. Using adult Phormia regina, both a bioassay and electrophysiological recordings show that Phote-HrTH slows down or inhibits the crop lobe muscles (P5) and, at the same time, stimulates the muscles of the pump 4 (P4) involved in pushing fluids out of the crop and up into the midgut for digestion. The EC50 for P4 was in the nanomolar range while the IC50 for P5 was 1.4-75.1 pM. The effect of Phote-HrTH on P4/5 suggests that the peptide is important in coordinating the two pumps, which are involved in moving carbohydrates up into the midgut for digestion. The adult crop organ is an essential storage organ for carbohydrates and now should be considered an important structure capable of delivering nutrients to the midgut for digestion.


Subject(s)
Diptera/physiology , Insect Hormones/metabolism , Insect Proteins/metabolism , Neuropeptides/metabolism , Animals , Electrophysiology , Female , Muscle Contraction , Muscle, Striated/physiology
20.
PLoS One ; 9(6): e100675, 2014.
Article in English | MEDLINE | ID: mdl-24956387

ABSTRACT

In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range.


Subject(s)
Butterflies/physiology , Food Preferences , Phylogeny , Taste/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Butterflies/drug effects , Carbohydrates/pharmacology , Feeding Behavior/drug effects , Neurons/drug effects , Neurons/physiology , Potassium Chloride/pharmacology , Sensilla/drug effects , Sensilla/physiology , Species Specificity , Taste/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...