Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
2.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589367

ABSTRACT

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Subject(s)
Myelodysplastic Syndromes , R-Loop Structures , Humans , Splicing Factor U2AF/genetics , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Transcription Factors/genetics , Phosphoproteins/genetics
3.
Cancer Discov ; 14(4): 635-638, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571431

ABSTRACT

SUMMARY: Cellular senescence has paradoxical effects on cancer emergence, progression, and therapeutic response. We herein identify four lessons that emerged from studying senescence interaction with cancer and emphasize four bottlenecks in the therapeutic manipulation of cellular senescence to prevent or cure cancer.


Subject(s)
Cellular Senescence , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics
4.
Curr Oncol ; 31(4): 1839-1864, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38668042

ABSTRACT

Understanding the diversity in cancer research priorities and the correlations among different treatment modalities is essential to address the evolving landscape of oncology. This study, conducted in collaboration with the European Cancer Patient Coalition (ECPC) and Childhood Cancer International-Europe (CCI-E) as part of the "UNCAN.eu" initiative, analyzed data from a comprehensive survey to explore the complex interplay of demographics, time since cancer diagnosis, and types of treatments received. Demographic analysis revealed intriguing trends, highlighting the importance of tailoring cancer research efforts to specific age groups and genders. Individuals aged 45-69 exhibited highly aligned research priorities, emphasizing the need to address the unique concerns of middle-aged and older populations. In contrast, patients over 70 years demonstrated a divergence in research priorities, underscoring the importance of recognising the distinct needs of older individuals in cancer research. The analysis of correlations among different types of cancer treatments underscored the multidisciplinary approach to cancer care, with surgery, radiotherapy, chemotherapy, precision therapy, and biological therapies playing integral roles. These findings support the need for personalized and combined treatment strategies to achieve optimal outcomes. In conclusion, this study provides valuable insights into the complexity of cancer research priorities and treatment correlations in a European context. It emphasizes the importance of a multifaceted, patient-centred approach to cancer research and treatment, highlighting the need for ongoing support, adaptation, and collaboration to address the ever-changing landscape of oncology.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Male , Aged , Middle Aged , Female , Biomedical Research , Adult , Demography , Research , Europe
5.
Blood ; 143(22): 2227-2244, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38493484

ABSTRACT

ABSTRACT: Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease presenting with either myeloproliferative or myelodysplastic features. Allogeneic hematopoietic cell transplantation (allo-HCT) remains the only potentially curative option, but the inherent toxicity of this procedure makes the decision to proceed to allo-HCT challenging, particularly because patients with CMML are mostly older and comorbid. Therefore, the decision between a nonintensive treatment approach and allo-HCT represents a delicate balance, especially because prospective randomized studies are lacking and retrospective data in the literature are conflicting. International consensus on the selection of patients and the ideal timing of allo-HCT, specifically in CMML, could not be reached in international recommendations published 6 years ago. Since then, new, CMML-specific data have been published. The European Society for Blood and Marrow Transplantation (EBMT) Practice Harmonization and Guidelines (PH&G) Committee assembled a panel of experts in the field to provide the first best practice recommendations on the role of allo-HCT specifically in CMML. Recommendations were based on the results of an international survey, a comprehensive review of the literature, and expert opinions on the subject, after structured discussion and circulation of recommendations. Algorithms for patient selection, timing of allo-HCT during the course of the disease, pretransplant strategies, allo-HCT modality, as well as posttransplant management for patients with CMML were outlined. The keynote message is, that once a patient has been identified as a transplant candidate, upfront transplantation without prior disease-modifying treatment is preferred to maximize chances of reaching allo-HCT whenever possible, irrespective of bone marrow blast counts.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myelomonocytic, Chronic , Transplantation, Homologous , Adult , Humans , Disease Management , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myelomonocytic, Chronic/therapy , Societies, Medical/standards
7.
Cancer Discov ; 14(1): 30-35, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38213296

ABSTRACT

To enable a collective effort that generates a new level of UNderstanding CANcer (UNCAN.eu) [Cancer Discov (2022) 12 (11): OF1], the European Union supports the creation of a sustainable platform that connects cancer research across Member States. A workshop hosted in Heidelberg gathered European cancer experts to identify ongoing initiatives that may contribute to building this platform and discuss the governance and long-term evolution of a European Federated Cancer Data Hub.


Subject(s)
Neoplasms , Humans , Research , European Union
8.
Healthcare (Basel) ; 12(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275541

ABSTRACT

Improvements in cancer care require a new degree of collaboration beyond the purely medical sphere, extending deeply into the world of other stakeholders-preeminently patients but also the other stakeholders in the hardware and software of care. Cancer remains a global health challenge, necessitating collaborative efforts to understand, prevent, and treat this complex disease. To achieve this goal, a comprehensive analysis was conducted, aligning the prioritization of cancer research measures in 13 European countries with 13 key recommendations for conquering cancer in the region. The study utilized a survey involving both patients and citizens, alongside data from IQVIA, a global healthcare data provider, to assess the availability and access to single-biomarker tests in multiple European countries. The results revealed a focused approach toward understanding, preventing, and treating cancer, with each country emphasizing specific research measures tailored to its strengths and healthcare objectives. This analysis highlights the intricate relationship between research priorities, access to biomarker tests, and financial support. Timely access to tests and increased availability positively influence research areas such as cancer prevention, early detection, ageing, and data utilization. The alignment of these country-specific measures with 13 recommendations for conquering cancer in Europe underscores the importance of tailored strategies for understanding, preventing, and treating cancer.

9.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135904

ABSTRACT

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Subject(s)
Neoplasms , Humans , Vatican City , Neoplasms/prevention & control , Translational Research, Biomedical , Delivery of Health Care , Precision Medicine
10.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065062

ABSTRACT

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Subject(s)
Leukemia , Myelodysplastic Syndromes , Neoplasms , RNA Methylation , Serine-Arginine Splicing Factors , Humans , Leukemia/genetics , Myelodysplastic Syndromes/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/genetics , RNA Methylation/genetics
11.
EMBO Mol Med ; 15(11): e18319, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37697915

ABSTRACT

Cytomegalovirus (CMV) infection is one of the severe opportunistic infections faced by severely immunocompromised patients. High viral loads cause tissue-invasive disease and expose to death or various indirect effects. Substantial progress was made in monitoring active infection, and antiviral drugs were developed. However, dose-limiting toxicities and genotypic resistance limit therapeutic efficacy and vaccine development is hampered by the complex biology of the virus. In this issue of EMBO Molecular Medicine, Kandalla et al (2023) suggest an innovative strategy using the cytokine macrophage colony-stimulating factor (M-CSF) whose clinical development was left behind two decades ago. By stimulating an endogenous immune defense mechanism, M-CSF promotes viral clearance in a mouse model of hematopoietic stem cell transplantation, without impairing stem cell engraftment. These results reactivate the interest in the potential therapeutic use of this cytokine.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Animals , Mice , Humans , Cytomegalovirus/physiology , Macrophage Colony-Stimulating Factor , Cytomegalovirus Infections/drug therapy , Cytokines/pharmacology
12.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Article in English | MEDLINE | ID: mdl-37157910

ABSTRACT

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Subject(s)
Neoplasms , Philosophy , Research , Interdisciplinary Studies
13.
Leukemia ; 37(6): 1287-1297, 2023 06.
Article in English | MEDLINE | ID: mdl-37100881

ABSTRACT

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFß1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Mice , Janus Kinase 2/genetics , Janus Kinases/genetics , Mutation , Myeloproliferative Disorders/genetics , Primary Myelofibrosis/genetics , RNA-Binding Proteins/genetics , Signal Transduction , STAT Transcription Factors/genetics
15.
Blood ; 142(4): 336-351, 2023 07 27.
Article in English | MEDLINE | ID: mdl-36947815

ABSTRACT

Structural variants (SVs) involving enhancer hijacking can rewire chromatin topologies to cause oncogene activation in human cancers, including hematologic malignancies; however, because of the lack of tools to assess their effects on gene regulation and chromatin organization, the molecular determinants for the functional output of enhancer hijacking remain poorly understood. Here, we developed a multimodal approach to integrate genome sequencing, chromosome conformation, chromatin state, and transcriptomic alteration for quantitative analysis of transcriptional effects and structural reorganization imposed by SVs in leukemic genomes. We identified known and new pathogenic SVs, including recurrent t(5;14) translocations that cause the hijacking of BCL11B enhancers for the allele-specific activation of TLX3 in a subtype of pediatric leukemia. Epigenetic perturbation of SV-hijacked BCL11B enhancers impairs TLX3 transcription, which are required for the growth of t(5;14) leukemia cells. By CRISPR engineering of patient-derived t(5;14) in isogenic leukemia cells, we uncovered a new mechanism whereby the transcriptional output of SV-induced BCL11B enhancer hijacking is dependent on the loss of DNA hypermethylation at the TLX3 promoter. Our results highlight the importance of the cooperation between genetic alteration and permissive chromatin as a critical determinant of SV-mediated oncogene activation, with implications for understanding aberrant gene transcription after epigenetic therapies in patients with leukemia. Hence, leveraging the interdependency of genetic alteration on chromatin variation may provide new opportunities to reprogram gene regulation as targeted interventions in human disease.


Subject(s)
Chromatin , Leukemia , Humans , Child , Chromatin/genetics , Enhancer Elements, Genetic , Chromosomes/metabolism , Transcription Factors/genetics , Leukemia/genetics , Tumor Suppressor Proteins/genetics , Repressor Proteins/genetics
16.
Mol Oncol ; 17(6): 925-945, 2023 06.
Article in English | MEDLINE | ID: mdl-36938773

ABSTRACT

European cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Europe , Germany , Policy
18.
Cell Death Differ ; 30(5): 1349-1365, 2023 05.
Article in English | MEDLINE | ID: mdl-36869180

ABSTRACT

Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.


Subject(s)
NADPH Oxidases , NF-kappa B , Humans , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Cytokines/genetics , Genomic Instability
19.
Int J Mol Sci ; 24(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36835566

ABSTRACT

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Subject(s)
Caspases , Macrophage Colony-Stimulating Factor , Humans , Animals , Mice , Macrophage Colony-Stimulating Factor/metabolism , Caspase 7/metabolism , Caspases/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , NADPH Oxidases/metabolism , Monocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...