Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 10: 689, 2019.
Article in English | MEDLINE | ID: mdl-31417606

ABSTRACT

Macrophages are key cells of innate immune response and serve as the first line of defense against bacteria. Transcription profiling of bacteria-infected macrophages could provide important insights on the pathogenicity and host defense mechanisms during infection. We have examined transcription profiles of bovine monocyte-derived macrophages (bMDMs) isolated from the blood of 12 animals and infected in vitro with two strains of Streptococcus agalactiae. Illumina sequencing of RNA from 36 bMDMs cultures exposed in vitro to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 h and unchallenged controls was performed. Analyses of over 1,656 million high-quality paired-end sequence reads revealed 5,936 and 6,443 differentially expressed genes (p < 0.05) in bMDMs infected with ST103 and ST12, respectively, versus unchallenged controls. Moreover, 588 genes differentially expressed between bMDMs infected with ST103 versus ST12 were identified. Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST103 revealed significant enrichment for granulocyte adhesion and diapedesis, while significant enrichment for the phagosome formation pathway was found among down-regulated genes. Moreover, Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST12 showed significant enrichment for type 1/type 2 T helper cell activation, while the complement activation pathway was overrepresented in the down-regulated genes. Our study identified pathogen-induced regulation of key genes and pathways involved in the immune response of macrophages against infection but also likely involved in bacterial evasion of the host immune system. These results may contribute to better understanding of the mechanisms underlying subclinical infection such as bovine streptococcal mastitis.

2.
BMC Genomics ; 19(1): 241, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29636015

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression at the post-transcriptional level and play a key role in the control of innate and adaptive immune responses. For a subclinical infection such as bovine streptococcal mastitis, early detection is a great challenge, and miRNA profiling could potentially assist in the diagnosis and contribute to the understanding of the pathogenicity and defense mechanisms. We have examined the miRNA repertoire and the transcript level of six key immune genes [tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and transforming growth factor beta 1 (TGFß1)] during the early phase response of bovine immature macrophages to in vitro infection with live Streptococcus agalactiae. Next generation sequencing of small RNA libraries from 20 cultures of blood monocyte-derived macrophages exposed to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 h in vitro and unchallenged controls was performed. RESULTS: Analyzes of over 356 million high quality sequence reads, revealed differential expression of 17 and 44 miRNAs (P < 0.05) in macrophages infected with ST103 and ST12, respectively, versus unchallenged control cultures. We also identified the expression of 31 potentially novel bovine miRNAs. Pathway analysis of the differentially regulated miRNAs and their predicted target genes in the macrophages infected with ST12 revealed significant enrichment for inflammatory response and apoptosis, while significant enrichment for integrin and GABA signaling were found in ST103 infected macrophages. Furthermore, both bacterial strains regulated miRNAs involved in the alternative activation of macrophages. The transcript levels of TNF-α, IL-1ß, IL-6, IL-8 and IL-10 were significantly up-regulated by both bacterial strains, however the expression of TGFß1 was significantly down-regulated only by ST12. CONCLUSIONS: Our study identified pathogen-induced differential regulation of miRNAs controlling inflammation and polarization in bovine macrophages. This implies that miRNAs have potential to serve as biomarkers for early detection of bacterial infection.


Subject(s)
Cattle/genetics , Cattle/microbiology , Macrophages/metabolism , Macrophages/microbiology , MicroRNAs/metabolism , Streptococcus agalactiae/physiology , Animals , Cattle/metabolism , Female , Gene Expression Regulation , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...