Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 115(41): 11466-77, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-21942625

ABSTRACT

The potential energy surface (PES) of C(2)H(5)(+)-N(2) is characterized in detail by infrared photodissociation (IRPD) spectroscopy of mass-selected ions in a quadrupole tandem mass spectrometer and ab initio calculations at the MP2/6-311G(2df,2pd) level. The PES features three nonequivalent minima. Two local minima, 1-N(2)(H) and 1-N(2)(C), are adduct complexes with binding energies of D(0) = 18 and 12 kJ/mol, in which the N(2) ligand is weakly bonded by electrostatic forces to either the acidic proton or the electrophilic carbon atom of the nonclassical C(2)H(5)(+) ion (1), respectively. The global minimum 3 is the ethanediazonium ion, featuring a weak dative bond of D(0) = 38 kJ/mol. This interaction strength is sufficient to switch the C(2)H(5)(+) structure from nonclassical to classical. The 1-N(2)(C) isomer corresponds to the entrance channel complex for addition of N(2) to 1 yielding the product 3. This reaction involves a small barrier of 7 kJ/mol as a result of the rearrangement of the C(2)H(5)(+) ion. The partly rotationally resolved IRPD spectrum of C(2)H(5)(+)-N(2) recorded in the C-H stretch range is dominated by four bands assigned to 3 and one weak transition attributed to 1-N(2)(H). The abundance ratio of 1-N(2)(H) and 3 estimated from the IRPD spectrum as ∼1% is consistent with the calculated free energy difference of 12 kJ/mol. As the ethanediazonium ion escaped previous mass spectrometric detection, the currently accepted value for the ethyl cation affinity of N(2) is revised from -ΔH(0) = 15.5 ± 1.5 to ∼42 kJ/mol. The first experimental identification and characterization of 3 provides a sensitive probe of the electrophilic character and fluxionality of the ethyl cation. Comparison of 3 with related alkanediazonium ions reveals the drastic effect of the size of the alkyl chain on their chemical reactivity, which is relevant in the context of hydrocarbon plasma chemistry of planetary atmospheres and the interstellar medium, as well as alkylation reactions of (bio)organic molecules (e.g., carcinogenesis and mutagenesis of DNA material).


Subject(s)
Ethane/chemistry , Nitrogen/chemistry , Ethane/analogs & derivatives , Ethane/isolation & purification , Ions/chemistry , Ions/isolation & purification , Nitrogen/isolation & purification , Quantum Theory , Spectrophotometry, Infrared , Stereoisomerism
2.
5.
J Phys Chem A ; 110(47): 12793-804, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125293

ABSTRACT

Infrared photodissociation (IRPD) spectra of mass-selected clusters composed of protonated aniline (C6H8N+ = AnH+) and a variable number of neutral ligands (L = Ar, N2) are obtained in the N-H stretch range. The AnH+ -Ln complexes (n < or = 3) are produced by chemical ionization in a supersonic expansion of An, H2, and L. The IRPD spectra of AnH+-Ln feature the unambiguous fingerprints of at least two different AnH+ nucleation centers, namely, the ammonium isomer (5) and the carbenium ions (1 and/or 3) corresponding to protonation at the N atom and at the C atoms in the para and/or ortho positions, respectively. Protonation at the meta and ipso positions is not observed. Both classes of observed AnH+-Ln isomers exhibit very different photofragmentation behavior upon vibrational excitation arising from the different interaction strengths of the AnH+ cores with the surrounding neutral ligands. Analysis of the incremental N-H stretch frequency shifts as a function of cluster size shows that microsolvation of both 5 and 1/3 in Ar and N2 starts with the formation of intermolecular H bonds of the ligands to the acidic NH protons and proceeds by intermolecular pi bonding to the aromatic ring. The analysis of both the photofragmentation branching ratios and the N-H stretch frequencies demonstrates that the N-H bonds in 5 are weaker and more acidic than those in 1/3, leading to stronger intermolecular H bonds with L. The interpretation of the spectroscopic data is supported by density functional calculations conducted at the B3LYP level using the 6-31G* and 6-311G(2df,2pd) basis sets. Comparison with clusters of neutral aniline and the aniline radical cation demonstrates the drastic effect of protonation and ionization on the acidity of the N-H bonds and the topology of the intermolecular potential, in particular on the preferred aromatic substrate-nonpolar ligand recognition motif.


Subject(s)
Aniline Compounds/chemistry , Argon/chemistry , Methane/analogs & derivatives , Nitrogen/chemistry , Quaternary Ammonium Compounds/chemistry , Hydrocarbons/chemistry , Isomerism , Ligands , Methane/chemistry , Protons , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared/methods
8.
J Phys Chem A ; 109(28): 6174-86, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16833957

ABSTRACT

Isolated and microsolvated protonated ethanol clusters, (EtOH)qH+-Ln with L = Ar and N2, are characterized by infrared photodissociation (IRPD) spectroscopy in the 3 microm range and quantum chemical calculations. For comparison, also the spectrum of the protonated methanol dimer, (MeOH)2H+, is presented. The IRPD spectra carry the signature of H-bonded (EtOH)qH+ chain structures, in which the excess proton is either strongly localized on one or (nearly) equally shared between two EtOH molecules, corresponding to Eigen-type ion cores (EtOH2+ for q = 1, 3) or Zundel-type ion cores (EtOH-H+-HOEt for q = 2, 4), respectively. In contrast to neutral (EtOH)q clusters, no cyclic (EtOH)qH+ isomers are detected in the size range investigated (q < or = 4), indicative of the substantial impact of the excess proton on the properties of the H-bonded ethanol network. The acidity of the two terminal OH groups in the (EtOH)qH+ chains decreases with the length of the chain (q). Comparison between (ROH)qH+ with R = CH3 and C2H5 shows that the acidity of the terminal O-H groups increases with the length of the aliphatic rest (R). The most stable (EtOH)qH+-Ln clusters with n < or = 2 feature intermolecular H-bonds between the inert ligands and the two available terminal OH groups of the (EtOH)qH+ chain. Asymmetric microsolvation of (EtOH)qH+ with q = 2 and 4 promotes a switch from Zundel-type to Eigen-type cores, demonstrating that the fundamental structural motif of the (EtOH)qH+ proton wire sensitively depends on the environment. The strength of the H-bonds between L and (EtOH)qH+ is shown to provide a rather sensitive probe of the acidity of the terminal OH groups.


Subject(s)
Argon/chemistry , Ethanol/chemistry , Hydrogen/chemistry , Nitrogen/chemistry , Hydrogen Bonding , Spectrophotometry, Infrared
9.
J Phys Chem A ; 109(35): 7881-7, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16834169

ABSTRACT

Protonated fluorobenzene ions (C6H6F+) are produced by chemical ionization of C6H5F in the cell of a FT-ICR mass spectrometer using either CH5+ or C2H5+. The resulting protonation sites are probed by IR multiphoton dissociation (IRMPD) spectroscopy in the 600-1700 cm-1 fingerprint range employing the free electron laser at CLIO (Centre Laser Infrarouge Orsay). Comparison with quantum chemical calculations reveals that the IRMPD spectra are consistent with protonation in para and/or ortho position, which are the thermodynamically favored protonation sites. The lack of observation of protonation at the F substituent, when CH5+ is used as protonating agent, is attributed to the low-pressure conditions in the ICR cell where the ions are produced. Comparison of the C6H6F+ spectrum with IR spectra of C6H5F and C6H7+ reveals the effects of both protonation and H F substitution on the structural properties of these fundamental aromatic molecules.


Subject(s)
Fluorobenzenes/chemistry , Spectrophotometry, Infrared/methods , Protons
10.
J Phys Chem A ; 109(16): 3598-607, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-16839026

ABSTRACT

The intermolecular interaction between the imidazole cation (Im+ = C3N2H4+) and nonpolar ligands is characterized in the ground electronic state by infrared photodissociation (IRPD) spectroscopy of size-selected Im+-Ln complexes (L = Ar, N2) and quantum chemical calculations performed at the UMP2/6-311G(2df,2pd) and UB3LYP/6-311G(2df,2pd) levels of theory. The complexes are created in an electron impact cluster ion source, which predominantly produces the most stable isomers of a given cluster ion. The analysis of the size-dependent frequency shifts of both the N-H and the C-H stretch vibrations and the photofragmentation branching ratios provides valuable information about the stepwise microsolvation of Im+ in a nonpolar hydrophobic environment, including the formation of structural isomers, the competition between various intermolecular binding motifs (H-bonding and pi-bonding) and their interaction energies, and the acidity of both the CH and NH protons. In line with the calculations, the IRPD spectra show that the most stable Im+-L dimers feature planar H-bound equilibrium structures with nearly linear H-bonds of L to the acidic NH group of Im+. Further solvation occurs at the aromatic ring of Im+ via the formation of intermolecular pi-bonds. Comparison with neutral Im-Ar demonstrates the drastic effect of ionization on the topology of the intermolecular potential, in particular in the preferred aromatic substrate-nonpolar recognition motif, which changes from pi-bonding to H-bonding. .


Subject(s)
Imidazoles/chemistry , Amino Acid Motifs , Argon/chemistry , Cations , Dimerization , Electrons , Hydrogen Bonding , Ions , Ligands , Models, Chemical , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Solvents , Spectrophotometry, Infrared/methods
11.
J Am Chem Soc ; 126(31): 9520-1, 2004 Aug 11.
Article in English | MEDLINE | ID: mdl-15291538

ABSTRACT

This Communication reports IR spectra and density functional calculations for the isolated protonated ethanol dimer and its N2-microsolvated complexes, (EtOH)2H+-(N2)n (n = 0-2) to investigate the degree of delocalization of the excess proton in this fundamental building block of an alcohol proton wire. The first spectroscopic characterization of isolated and microsolvated (EtOH)2H+ suggests that the excess proton is (nearly) equally shared between both EtOH units under symmetric solvation conditions (Zundel-type ion, n = 0 and 2), whereas it is largely localized on a single EtOH molecule for asymmetric solvation (Eigen-type ion, n = 1).

12.
J Chem Phys ; 120(22): 10470-82, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15268075

ABSTRACT

Infrared photodissociation (IRPD) spectra of clusters composed of protonated phenol (C(6)H(7)O(+)) and several ligands L are recorded in the O-H and C-H stretch ranges using a tandem mass spectrometer coupled to a cluster ion source. The C(6)H(7)O(+)-L(n) complexes (L=Ar/N(2), n=1-6) are generated by chemical ionization of a supersonic expansion. The IRPD spectra of mass selected C(6)H(7)O(+)-L(n) clusters obtained in various C(6)H(7)O(+)-L(m) fragment channels (m

13.
J Chem Phys ; 121(2): 769-72, 2004 Jul 08.
Article in English | MEDLINE | ID: mdl-15260603

ABSTRACT

Isomer-selective infrared photodissociation (IRPD) spectra are obtained for the first time for protonated polyfunctional aromatic molecules isolated in the gas phase. IRPD spectra of the oxonium and fluoronium isomers of protonated para-fluorophenol (C6H6FO+) were separately obtained by monitoring resonant photo-induced H2O and HF loss, respectively. Analysis of the F-H, O-H, and C-H stretch wave numbers provides valuable spectroscopic information on the chemical properties of these reactive intermediates, in particular on the substitution effects of functional groups.

14.
J Am Chem Soc ; 126(6): 1716-25, 2004 Feb 18.
Article in English | MEDLINE | ID: mdl-14871102

ABSTRACT

Structural isomers of isolated protonated phenol (C(6)H(7)O(+)) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N(2)). IR spectra of C(6)H(7)O(+)-L recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C(6)H(7)O(+) isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C(6)H(7)O(+)) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C(6)H(7)O(+)). In contrast, protonation at the meta and ipso positions is not observed. The most stable C(6)H(7)O(+)-L dimer structures feature intermolecular H-bonds between L and the OH groups of O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). Extrapolation to zero solvation interaction yields reliable experimental vibrational frequencies of bare O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). The interpretation of the C(6)H(7)O(+)-L spectra, as well as the extrapolated monomer frequencies, is supported by B3LYP and MP2 calculations using the 6-311G(2df,2pd) basis. The spectroscopic and theoretical results elucidate the effect of protonation on the structural properties of phenol and provide a sensitive probe of the activating and ortho/para directing nature of the OH group observed in electrophilic aromatic substitution reactions.

16.
J Am Chem Soc ; 125(5): 1421-30, 2003 Feb 05.
Article in English | MEDLINE | ID: mdl-12553845

ABSTRACT

The IR spectrum of the fluoronium isomer of protonated fluorobenzene (F-C(6)H(6)F(+), phenylfluoronium) is recorded in the vicinity of the C-H and F-H stretch fundamentals to obtain the first structured spectrum of an isolated protonated aromatic molecule in the gas phase. Stable F-C(6)H(6)F(+) ions are produced via proton transfer from CH(5)(+) to fluorobenzene (C(6)H(5)F) in a supersonic plasma expansion. The F-C(6)H(6)F(+) spectrum recorded between 2,540 and 4,050 cm(-1) is consistent with a weakly bound ion-dipole complex composed of HF and the phenyl cation, HF-C(6)H(5)(+). The strongest transition occurs at 3,645 cm(-1) and is assigned to the F-H stretch (sigma(FH)). The antisymmetric C-H stretch of the two ortho hydrogen atoms, sigma(CH) = 3,125 cm(-1), is nearly unshifted from bare C(6)H(5)(+), indicating that HF complexation has little influence on the C-H bond strength of C(6)H(5)(+). Despite the simultaneous production of the more stable ring protonated carbenium isomers of C(6)H(6)F(+) (fluorobenzenium) in the electron ionization source, F-C(6)H(6)F(+) can selectively be photodissociated into C(6)H(5)(+) and HF under the present experimental conditions, because it has a much lower dissociation energy than all carbenium isomers. Quantum chemical calculations at the B3LYP and MP2 levels of theory using the 6-311G(2df,2pd) basis support the interpretation of the experimental data and provide further details on structural, energetic, and vibrational properties of F-C(6)H(6)F(+), the carbenium isomers of C(6)H(6)F(+), and other weakly bound HF-C(6)H(5)(+) ion-dipole complexes. The dissociation energy of F-C(6)H(6)F(+) with respect to dehydrofluorination is calculated as D(0) = 4521 cm(-1) (approximately 54 kJ/mol). Analysis of the charge distribution in F-C(6)H(6)F(+) supports the notation of a HF-C(6)H(5)(+) ion-dipole complex, with nearly the whole positive charge of the added proton distributed over the C(6)H(5)(+) ring. As a result, protonation at the F atom strongly destabilizes the C-F bond in C(6)H(5)F.


Subject(s)
Fluorobenzenes/chemistry , Gases , Protons , Quantum Theory , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared , Thermodynamics
17.
Angew Chem Int Ed Engl ; 41(19): 3628-31. 3517, 2002 Oct 04.
Article in English | MEDLINE | ID: mdl-12370912
SELECTION OF CITATIONS
SEARCH DETAIL
...