Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Tissue Eng Part A ; 24(23-24): 1831-1843, 2018 12.
Article in English | MEDLINE | ID: mdl-29936884

ABSTRACT

Tissue engineering requires large numbers of cells with enhanced differentiation properties. Thus, the effect of expansion conditions must be explored. Human and rat marrow-derived mesenchymal stem cells (hMSCs and rMSCs, respectively) were comparatively culture expanded through seven passages in the presence of either fibroblast growth factor-2 (FGF-2) or platelet-derived growth factor BB (PDGF-BB). Proliferation of both hMSCs and rMSCs was enhanced by FGF-2 and PDGF-BB. Population doubling times for hMSCs were 2.4 days for control and 1.75 and 2.0 days for FGF-2 and PDGF-BB, respectively, and 3.25, 3.06, and 2.95 days for rMSCs. Supplementation with FGF-2 during cell expansion resulted in significantly greater in vivo bone formation for hMSCs. Use of PDGF-BB resulted in greater bone formation than that observed for control conditions, but the differences were only significant for P1. For rMSCs, significant increases in bone formation were noted in either FGF-2 or PDGF-BB expanded cells implanted at P4 or P7, but not for P1. Under in vitro osteogenic stimulation, calcium content was elevated and bone matrix deposition was enhanced for P1 and P7 rMSCs expanded with FGF-2. Although culture conditions, including FBS, were held constant, these observations suggest that medium must be optimized separately for each species of MSCs.


Subject(s)
Becaplermin/pharmacology , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/pharmacology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Animals , Bone Marrow Cells/cytology , Humans , Mesenchymal Stem Cells/cytology , Rats , Species Specificity
2.
Stem Cells ; 33(2): 601-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25336340

ABSTRACT

We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease , Graft vs Leukemia Effect/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Animals , Cell Line, Tumor , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Heterografts , Humans , Immunity, Cellular , Mice , T-Lymphocytes/immunology , T-Lymphocytes/pathology
3.
J Orthop Res ; 32(1): 145-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24018586

ABSTRACT

This study compared the effect of intra-tendon (IT) delivery of recombinant human platelet-derived growth factor-BB (rhPDGF-BB), platelet-rich plasma (PRP) and corticosteroids in a rat tendinopathy model. Seven days after collagenase induction of tendinopathy, a 30-µl IT injection was administered. Treatments included: saline; 3 µg rhPDGF-BB; 10 µg rhPDGF-BB; PRP; and 300 µg triamcinolone acetonide (TCA). Outcomes were assessed 7 and 21 days after treatment. All groups exhibited good to excellent repair. Relative to saline, cell proliferation increased 65% in the 10 µg rhPDGF-BB group and decreased 74% in the TCA group; inflammation decreased 65% in the TCA group. At 7 days, maximum load-to-failure was increased in the 3 µg rhPDGF-BB group relative to saline, PRP, and TCA (p < 0.025). On day 21, maximum load-to-rupture was increased in the 10 µg rhPDGF-BB group relative to saline, PRP, and TCA (p < 0.035) and in the 3 µg rhPDGF-BB group compared to saline and TCA (p < 0.027). Stiffness in the 10 µg rhPDGF-BB group was increased compared to saline, PRP, and TCA (p < 0.038). Histology demonstrated similar repair in all groups. PRP and TCA did not improve mechanical properties compared to saline. Injections of rhPDGF-BB increased maximum load-to-failure (3 and 10 µg) and stiffness (10 µg) relative to controls and commonly used treatments. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:145-150, 2014.


Subject(s)
Achilles Tendon/drug effects , Adrenal Cortex Hormones/pharmacology , Platelet-Rich Plasma , Proto-Oncogene Proteins c-sis/pharmacology , Tendinopathy/drug therapy , Achilles Tendon/pathology , Achilles Tendon/physiology , Animals , Becaplermin , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/physiology , Disease Models, Animal , Humans , Injections, Intralesional , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Tendinopathy/pathology , Tendinopathy/physiopathology , Treatment Outcome
4.
Stem Cells Int ; 2013: 806525, 2013.
Article in English | MEDLINE | ID: mdl-23431315

ABSTRACT

Bone-marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

5.
Curr Pharm Des ; 19(19): 3384-90, 2013.
Article in English | MEDLINE | ID: mdl-23432673

ABSTRACT

Recombinant human PDGF BB homodimer (rhPDGF-BB) is a potent recruiter of, and strong mitogenic factor for, cells crucial to musculoskeletal tissue repair, including mesenchymal stem cells (MSCs), osteogenic cells and tenocytes. rhPDGF-BB also upregulates angiogenesis. These properties allow rhPDGF-BB to trigger the cascade of bone and adjoining soft tissue repair and regeneration. This mechanism of action has been established in numerous preclinical and clinical studies. Demonstration of the safety and efficacy of rhPDGF-BB in the healing of chronic foot ulcers in diabetic patients and regeneration of alveolar (jaw) bone lost due to chronic infection from periodontal disease has resulted in two FDA-approved products based on this molecule. A third product is in late stages of clinical development, with pilot and pivotal clinical studies of rhPDGF-BB mixed with an osteoconductive bone matrix (Augment(®) Bone Graft) in foot and ankle fusions demonstrating that this product is at least as effective as bone autograft, and has an improved safety profile. Additional combinations of rhPDGF-BB with tissue-specific matrices are also being studied clinically in additional musculoskeletal indications.


Subject(s)
Bone Regeneration/drug effects , Oral Surgical Procedures/methods , Orthopedic Procedures/methods , Proto-Oncogene Proteins c-sis/pharmacology , Animals , Becaplermin , Clinical Trials as Topic , Drug Evaluation, Preclinical , Fractures, Bone/drug therapy , Fractures, Bone/surgery , Humans , Periodontal Diseases/drug therapy , Periodontal Diseases/surgery
6.
Clin Drug Investig ; 33(2): 143-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334906

ABSTRACT

BACKGROUND: Augment(®) Bone Graft is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Augment(®) Bone Graft is a combination device comprised of beta-tricalcium phosphate (ß-TCP) and recombinant human platelet-derived growth factor BB homodimer (rhPDGF-BB). OBJECTIVE: This human pharmacokinetic study was undertaken to assess the effect of Augment(®) Bone Graft implantation on the serum concentration of platelet-derived growth factors (PDGFs). METHODS: Under the terms of a Research Ethics Board-approved protocol, Augment(®) Bone Graft was implanted in patients (n = 7) undergoing hindfoot and ankle arthrodesis procedures requiring graft material. The control cohort of the study (n = 4) received autologous bone graft. The serum concentrations of PDGF isoforms AA, AB and BB in blood samples, obtained prior to and at ten time points (up to 7 days) after surgery, were measured using enzyme-linked immunosorbent assays (ELISA). RESULTS: The serum concentration of PDGF-BB did not vary significantly from baseline (median of the combined cohorts 3.89 ng/mL) throughout the course of the study. The serum concentrations of PDGF-AA, PDGF-AB and total PDGF did not deviate from their baseline values (medians of the combined cohorts were 2.87, 14.95 and 20.19 ng/mL for PDGF-AA, PDGF-AB and total PDGF, respectively) except for the last time point in which they were increased (medians for the combined cohorts were 4.71, 20.42 and 30.29 ng/mL for PDGF-AA, PDGF-AB and total PDGF, respectively). There were no differences between the two treatment groups with regard to changes in the serum concentrations of PDGF. None of the samples tested contained anti-PDGF-BB antibodies. CONCLUSION: Analysis of the data demonstrated that the serum concentrations of all three PDGF isoforms analysed were unaffected by implantation of Augment(®) Bone Graft.


Subject(s)
Biocompatible Materials/pharmacology , Calcium Phosphates/pharmacology , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-sis/blood , Adult , Aged , Ankle Joint , Arthrodesis/methods , Becaplermin , Biocompatible Materials/administration & dosage , Calcium Phosphates/administration & dosage , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Time Factors
7.
Am J Stem Cells ; 1(2): 138-145, 2012 Jun 30.
Article in English | MEDLINE | ID: mdl-23087846

ABSTRACT

Mesenchymal stem cells (MSCs) are non-hematopoietic, pluripotent cells that give rise to stromal cells in the marrow. MSCs have been shown to be immunosuppressive and have become an attractive therapeutic option for the modulation of undesired immune responses. Currently, ex vivo expanded human (h)MSCs are being utilized in clinical trials both in the USA and in Europe to treat a variety of immune disorders. hMSCs need to be harvested, isolated and expanded in culture. This necessary expansion may also result in decrease or loss of the immunomodulatory potential of hMSCs. Ideally, the intrinsic immunomodulatory activity (potency) of an hMSC preparation should be assessed prior to its administration. The goal of the experiments described here was to develop a simple potency assay for the immunomodulatory properties of hMSCs. The immunosuppressive activity of hMSCs conditioned media was tested in enzyme-linked immunosorbent spot assays (ELISpot) and the immunosuppressive activity of the conditioned media was correlated with the concentration of several cytokines present in these conditioned media. The concentration of prostaglandin E(2) in the media correlated with their immunosuppressive activity. The concentration of the other cytokines measured did not correlate with the immunosuppressive activity of the media. The dose-response effect could be replicated by adding PGE(2) to ELISpot assays. Furthermore, the immunosuppressive activity of the conditioned media was inhibitable by a neutralizing anti-PGE(2) antibody. These data suggest that measurement of PGE(2) in media conditioned by hMSCs exposed to inflammatory stimuli could be used as a surrogate measure of their immunosuppressive capacity. These findings need to be confirmed in vitro using different assays of immune function and validated in vivo to determine the level of correlation of these data with efficacy in pre-clinical models of immune disorders.

8.
J Tissue Eng ; 3(1): 2041731412442668, 2012.
Article in English | MEDLINE | ID: mdl-22511993

ABSTRACT

This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment(®) Bone Graft (Augment). Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants) and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

9.
Spine (Phila Pa 1976) ; 37(8): E461-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22024900

ABSTRACT

STUDY DESIGN: This study was designed to determine whether Augment Bone Graft (Augment, Biomimetic Therapeutics, Inc., Franklin, TN) and Augment Injectable Bone Graft (Augment Injectable, Biomimetic Therapeutics, Inc., Franklin, TN), 2 combination devices comprising recombinant human platelet-derived growth factor-BB and ß-tricalcium phosphate-containing matrices, promote bone bridging in an ovine model of lumbar spine fusion. Autologous bone graft (autograft) was used as a positive control. OBJECTIVE: The purpose of this study was to determine the ability of Augment products to promote fusion of the L2-L3 and L4-L5 vertebral bodies in an ovine model. SUMMARY OF BACKGROUND DATA: In interbody spine fusion, the intervertebral disc is removed and a spacer is inserted for support and to facilitate bone growth. The fusion is commonly enhanced with grafts. Autograft is the "gold standard" but it has limitations including availability and donor-site morbidity. Synthetic graft substitutes eliminate these complications. Augment products are combination devices including recombinant human platelet-derived growth factor-BB, a well-characterized chemotactic, mitogenic, and proangiogenic protein essential in wound and bone healing. METHODS: Twenty-two sheep received an uninstrumented, double-level, interbody lumbar spinal fusion procedure using a polyetheretherketone spacer, which was either empty or packed with iliac crest autograft, Augment or Augment Injectable. The same treatment was used at both levels. Animals were 24 weeks after surgery, and fusion was assessed by micro-computed tomography (micro-CT) and histology. RESULTS: Micro-CT and histologic assessment of fusion revealed that empty controls had significantly lower fusion rates. No differences were detected among autografts, Augment, and Augment Injectable-treated specimens. Residual ß-tricalcium phosphate particles embedded in the newly formed bone were visible in Augment- and Augment Injectable-treated specimens. CONCLUSION: Augment-treated specimens had the highest fusion scores. Treatment with either of the Augment products significantly promoted interbody spine fusion compared with empty spacers and was equivalent to autograft-induced fusion. No adverse events were noted.


Subject(s)
Bone Transplantation/methods , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Animals , Becaplermin , Diskectomy , Ilium/transplantation , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/surgery , Lumbar Vertebrae/diagnostic imaging , Proto-Oncogene Proteins c-sis/therapeutic use , Radiography , Sheep , Transplantation, Autologous
10.
Tissue Eng Part B Rev ; 18(3): 225-34, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22145770

ABSTRACT

Intrinsic tendon healing in response to injury is a reparative process that often results in formation of scar tissue with functional and mechanical properties inferior to those of the native tendon. Development of therapies that can promote regenerative, rather than reparative, healing hold the promise of improving patient recovery from tendon and ligament injuries by producing tissue that is morphologically and functionally equivalent to the native tissue. One therapeutic approach that has been a frequent topic of investigation in the preclinical literature is the use of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) to augment tendon and ligament repair. The chemotactic, mitogenic, and pro-angiogenic properties of rhPDGF-BB have been shown to result in recruitment and proliferation of tenogenic cells and a commensurate boost in extracellular matrix deposition and organization, improving the morphological and biomechanical properties of healing tendons and ligaments. The outcomes of the preclinical studies reviewed here strongly suggest that rhPDGF-BB will provide a new therapeutic opportunity to improve the treatment of injured tendons and ligaments.


Subject(s)
Ligaments/pathology , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-sis/pharmacology , Regeneration/drug effects , Tendons/pathology , Wound Healing/drug effects , Animals , Becaplermin , Humans , Ligaments/drug effects , Proto-Oncogene Proteins c-sis/chemistry , Tendons/drug effects
11.
Methods Mol Biol ; 698: 253-78, 2011.
Article in English | MEDLINE | ID: mdl-21431525

ABSTRACT

It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.


Subject(s)
Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cell Separation/methods , Chondrogenesis , Mesenchymal Stem Cells/cytology , Cryopreservation , Humans , Quality Control , RNA/isolation & purification
12.
Stem Cells Int ; 2011: 235176, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21437189

ABSTRACT

Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplementation increased expansion 3,500- and 240,000-fold by passages 7 and 13, respectively. There were no differences in immunosuppressive activity between media conditioned by passage-matched cells expanded under different conditions, but media conditioned by FGF-treated MSCs were superior to population doubling-matched controls. The immunosuppressive activity was maintained in three of the preparations but decreased with expansion in two. The proliferation induced by FGF-2 did not result in loss of immunosuppressive activity. However, because the immunosuppressive activity was not consistently preserved, caution must be exercised to ensure that the activity of the cells is sufficient after extensive expansion.

13.
Blood ; 117(15): e131-41, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21330471

ABSTRACT

Cytokine-mediated phosphorylation of Erk (pErk), ribosomal S6 (pS6), and Stat5 (pStat5) in CD34(+)/CD117(+) blast cells in normal bone marrow from 9 healthy adult donors were analyzed over 60 minutes. Treatment with stem cell factor (SCF), Flt3-ligand (FL), IL-3, and GM-CSF and measurement by multiparametric flow cytometry yielded distinctive, highly uniform phosphoprotein kinetic profiles despite a diverse sample population. The correlated responses for SCF- and FL-stimulated pErk and pS6 were similar. Half the population phosphorylated Erk in response to SCF between 0.9 and 1.2 minutes, and S6 phosphorylation followed approximately a minute later (t½(pS6 rise) = 2.2-2.7 minutes). The FL response was equally fast but more variable (t½(pErk rise) = 0.9-1.3 minutes; t½(pS6 rise) = 2.5-3.5 minutes). Stat5 was not activated in 97% of the cells by either cytokine. IL-3 and GM-CSF were similar to each other with half of blast cells phosphorylating Stat5 and 15% to 20% responding through Erk and S6. Limited comparison with leukemic blasts confirmed universal abnormal signaling in AML that is significantly different from normal bone marrow blasts. These differences included sustained signals, a larger fraction of responding cells, and amplification of phosphorylation levels for at least one phosphoprotein. These data support the eventual use of this approach for disease diagnosis and monitoring.


Subject(s)
Antigens, CD34/metabolism , Bone Marrow/metabolism , Hematopoiesis/physiology , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/physiology , Adult , Biomarkers/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Flow Cytometry , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Interleukin-3/metabolism , Interleukin-3/pharmacology , Male , Membrane Proteins/metabolism , Membrane Proteins/pharmacology , Middle Aged , Phosphoproteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Stem Cell Factor/metabolism , Stem Cell Factor/pharmacology
14.
Stem Cell Res Ther ; 1(1): 8, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20504289

ABSTRACT

INTRODUCTION: Human multipotent mesenchymal stem cell (MSC) therapies are being tested clinically for a variety of disorders, including Crohn's disease, multiple sclerosis, graft-versus-host disease, type 1 diabetes, bone fractures, and cartilage defects. However, despite the remarkable clinical advancements in this field, most applications still use traditional culture media containing fetal bovine serum. The ill-defined and highly variable nature of traditional culture media remains a challenge, hampering both the basic and clinical human MSC research fields. To date, no reliable serum-free medium for human MSCs has been available. METHODS: In this study, we developed and tested a serum-free growth medium on human bone marrow-derived MSCs through the investigation of multiple parameters including primary cell isolation, multipassage expansion, mesoderm differentiation, cellular phenotype, and gene-expression analysis. RESULTS: Similar to that achieved with traditional culture medium, human MSCs expanded in serum-free medium supplemented with recombinant human platelet-derived growth factor-BB (PDGF-BB), basic fibroblast growth factor (bFGF), and transforming growth factor (TGF)-beta1 showed extensive propagation with retained phenotypic, differentiation, and colony-forming unit potential. To monitor global gene expression, the transcriptomes of bone marrow-derived MSCs expanded under serum-free and serum-containing conditions were compared, revealing similar expression profiles. In addition, the described serum-free culture medium supported the isolation of human MSCs from primary human marrow aspirate with continual propagation. CONCLUSIONS: Although the described serum-free MSC culture medium is not free of xenogeneic components, this medium provides a substitute for serum-containing medium for research applications, setting the stage for future clinical applications.


Subject(s)
Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Culture Media/chemistry , Mesenchymal Stem Cells/metabolism , Becaplermin , Cells, Cultured , Fibroblast Growth Factor 2/metabolism , Gene Expression Profiling , Humans , Mesenchymal Stem Cells/cytology , Proto-Oncogene Proteins c-sis/metabolism , Serum , Transforming Growth Factor beta1/metabolism
15.
Tissue Eng Part A ; 16(3): 1009-19, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19842915

ABSTRACT

We compared human mesenchymal stem cells (hMSCs), expanded long term with and without fibroblast growth factor (FGF) supplementation, with respect to proliferation, and the ability to undergo chondrogenesis in vitro. hMSCs expanded in FGF-supplemented medium proliferated more rapidly than the control cells. Aggregates of FGF-treated cells exhibited chondrogenic differentiation at all passages tested although, in some preparations, differentiation was diminished after seventh passage. Aggregates made with control cells differentiated along the chondrogenic lineage after first passage but exhibited only marginal differentiation after fourth and failed to form cartilage after seventh passage. Microarray analysis of gene expression identified 334 transcripts differentially expressed in fourth passage control cells that had reduced chondrogenic potential, compared with the fourth passage FGF-treated cells that retained this capacity, and 243 transcripts that were differentially expressed when comparing them to the first passage control cells that were also capable of differentiating into chondrocytes. The intersection of these analyses yielded 49 transcripts differentially expressed in cells that exhibited chondrogenic differentiation in vitro compared with the cells that did not. Among these, angiopoietin 1, secreted frizzled-related protein 1, and six transmembrane epithelial antigen of the prostate 1 appear to be of higher relevance. These preliminary data must now be validated to verify whether different gene expression profiles translate into functional differences. In summary, these findings suggest that the chondrogenic potential of hMSCs is vulnerable to cell expansion and that care should be exercised when expanding these cells for cartilage tissue engineering applications. Supplementation with FGF-2 allows reaching target cell numbers more rapidly and extends the level of expansion within which these cells are useful for tissue-engineered cartilage repair.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Chondrogenesis/drug effects , Fibroblast Growth Factor 2/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Adult , Adult Stem Cells/metabolism , Cell Aggregation/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrogenesis/genetics , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/metabolism , Time Factors
16.
Biol Blood Marrow Transplant ; 16(7): 891-906, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20018250

ABSTRACT

Regenerative stromal cell therapy (RSCT) has the potential to become a novel therapy for preventing and treating acute graft-versus-host disease (GVHD) in the allogeneic hematopoietic stem cell transplant (HSCT) recipient. However, enthusiasm for using RSCT in allogeneic HSCT has been tempered by limited clinical data and poorly defined in vivo mechanisms of action. As a result, the full clinical potential of RSCT in supporting hematopoietic reconstitution and as treatment for GVHD remains to be determined. This manuscript reviews the immunomodulatory activity of regenerative stromal cells in preclinical models of allogeneic HSCT, and emphasizes an emerging literature suggesting that microenvironment influences RSC activation and function. Understanding this key finding may ultimately define the proper niche for RSCT in allogeneic HSCT. In particular, mechanistic studies are needed to delineate the in vivo effects of RSCT in response to inflammation and injury associated with allogeneic HSCT, and to define the relevant sites of RSC interaction with immune cells in the transplant recipient. Furthermore, development of in vivo imaging technology to correlate biodistribution patterns, desired RSC effect, and clinical outcome will be crucial to establishing dose-response effects and minimal biologic dose thresholds needed to advance translational treatment strategies for complications like GVHD.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Regenerative Medicine/methods , Stromal Cells/transplantation , Humans , Regenerative Medicine/trends , Transplantation Conditioning/methods
17.
Physiol Genomics ; 37(1): 23-34, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19116247

ABSTRACT

Mesenchymal stem cells (MSCs) can differentiate into osteogenic, adipogenic, chondrogenic, myocardial, or neural lineages when exposed to specific stimuli, making them attractive for tissue repair and regeneration. We have used reporter gene-based imaging technology to track MSC transplantation or implantation in vivo. However, the effects of lentiviral transduction with the fluc-mrfp-ttk triple-fusion vector on the transcriptional profiles of MSCs remain unknown. In this study, gene expression differences between wild-type and transduced hMSCs were evaluated using an oligonucleotide human microarray. Significance Analysis of Microarray identified differential genes with high accuracy; RT-PCR validated the microarray results. Annotation analysis showed that transduced hMSCs upregulated cell differentiation and antiapoptosis genes while downregulating cell cycle, proliferation genes. Despite transcriptional changes associated with bone and cartilage remodeling, their random pattern indicates no systematic change of crucial genes that are associated with osteogenic, adipogenic, or chondrogenic differentiation. This correlates with the experimental results that lentiviral transduction did not cause the transduced MSCs to lose their basic stem cell identity as demonstrated by osteogenic, chondrogenic, and adipogenic differentiation assays with both transduced and wild-type MSCs, although a certain degree of alterations occurred. Histological analysis demonstrated osteogenic differentiation in MSC-loaded ceramic cubes in vivo. In conclusion, transduction of reporter genes into MSCs preserved the basic properties of stem cells while enabling noninvasive imaging in living animals to study the biodistribution and other biological activities of the cells.


Subject(s)
Gene Expression Profiling , Genes, Reporter , Mesenchymal Stem Cells/metabolism , Transcription, Genetic , Transduction, Genetic , Whole Body Imaging , Adipogenesis , Animals , Biological Assay , Ceramics , Gene Regulatory Networks , Humans , Luciferases/metabolism , Luminescent Proteins/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice , Oligonucleotide Array Sequence Analysis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Prosthesis Implantation , Software , Thymidine Kinase/metabolism , Red Fluorescent Protein
18.
Biotechniques ; 42(6): 732, 734-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17612296

ABSTRACT

Aggregate culture provides a three-dimensional (3-D) environment for differentiating or differentiated cells; it is particularly useful to study in vitro chondrogenesis and cartilage biology. We have recently ported this method from a conical tube-based format to a 96-well plate format for the study of mesenchymal stem cell (MSC) chondrogenesis. The microplate format has greatly reduced the workload and materials cost, while maintaining reproducible chondrogenic differentiation. A long-term goal is to fully automate aggregate culture--this requires critically identifying all the indispensable steps of the protocol. Robotic laboratory equipment for manipulating microplate assays are commercially available; however centrifugation steps are difficult to implement automatically. We, therefore, tested whether the centrifugation step can be eliminated, thus significantly streamlining the assay workflow. By comparing aggregates prepared from human bone marrow-derived MSCs (hMSCs) that were formed either through centrifugation or through free sedimentation, we found that both methods produce aggregates with similar formation kinetics, and that there was no perceptible difference in the timing of the appearance of markers of chondrogenesis. Thus, it appears safe to eliminate the centrifugation step from the aggregate culture protocol. This results in significant time and effort savings and paves the way for future full automation of the aggregate assay.


Subject(s)
Biological Assay/methods , Chondrogenesis , Mesenchymal Stem Cells/cytology , Cells, Cultured , Humans , Time Factors
19.
Tissue Eng ; 12(7): 1851-63, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16889515

ABSTRACT

These studies address critical technical issues involved in creating human mesenchymal stem cell (hMSC)/ scaffold implants for cartilage repair. These issues include obtaining a high cell density and uniform spatial cell distribution within the scaffold, factors that are critical in the initiation and homogeneity of chondrogenic differentiation. For any given scaffold, the initial seeding influences cell density, retention, and spatial distribution within the scaffold, which eventually will affect the function of the construct. Here, we discuss the development of a vacuum-aided seeding technique for HYAFF -11 sponges which we compared to passive infiltration. Our results show that, under the conditions tested, hMSCs were quantitatively and homogeneously loaded into the scaffolds with 90+% retention rates after 24 h in perfusion culture with no negative effect on cell viability or chondrogenic potential. The retention rates of the vacuum-seeded constructs were at least 2 times greater than those of passively seeded constructs at 72 h. Histomorphometric analysis revealed that the core of the vacuum-seeded constructs contained 240% more cells than the core of passively infiltrated scaffolds. The vacuum seeding technique is safe, rapid, reproducible, and results in controlled quantitative cell loading, high retention, and uniform distribution.


Subject(s)
Biocompatible Materials , Cartilage , Cell Culture Techniques , Cell Differentiation , Mesenchymal Stem Cells/cytology , Bioreactors , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Survival , Chondrocytes/cytology , Chondrocytes/physiology , Humans , Mesenchymal Stem Cells/physiology , Tissue Engineering
20.
Front Biosci ; 11: 1690-5, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16368547

ABSTRACT

Tissue-engineering is considered a promising avenue for developing human articular cartilage implants that can be employed for resurfacing damaged cartilage in the early stages of osteoarthritis. In the present study, human cartilage-constructs were produced from human osteoarthritic chondrocytes maintained on a scaffold of HYAFFR-11 in perfusion mini-bioreactors or after implantation and recovery from nude or SCID mice after 3 weeks. The human cartilage-construct extracellular matrix reacted positively with anti-Type II collagen monoclonal antibody, but not with anti-Type I or anti-Type X collagen monoclonal antibodies. A significant portion of the cartilage-construct extracellular matrix stained metachromatic with Toluidine blue-O indicative of sulfated-proteoglycan deposition. Cyclic hydrostatic pressure applied for 4 hrs at 5 MPa using a 1 Hertz sinusoidal frequency significantly increased (p < 0.02) the proportion of apoptotic cells in the cartilage-constructs (41% +/- 4.2%; mean +/- SD) compared to control cartilage-constructs (28.5 +/- 8.4%).


Subject(s)
Apoptosis , Cartilage/pathology , Chondrocytes/cytology , Hydrostatic Pressure , Osteoarthritis/pathology , Animals , Antibodies, Monoclonal/chemistry , Bioreactors , Cartilage/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Collagen/chemistry , Collagen/metabolism , DNA, Single-Stranded/chemistry , Extracellular Matrix/metabolism , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Nude , Mice, SCID , Microscopy, Fluorescence , Osteoarthritis/metabolism , Proteoglycans/chemistry , Tissue Engineering , Tolonium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...