Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1196812, 2023.
Article in English | MEDLINE | ID: mdl-37305090

ABSTRACT

Introduction: Today, alternative strategies based on the use of bioactive compounds have been proposed to reduce mycotoxin contamination and limit the use of chemical fungicides. Methods: In the present work, several by-products collected from the agri-food chain (i.e., red and white grape marc, red grapevine leaves, grape seeds and stalks, pear, apple, green beans, tomato, and spent hops) were subjected to green extraction protocols (i.e., steam distillation, Ultrasound-Assisted, and Naviglio® extraction) to obtain extracts rich in polyphenols and terpenes. Each extract was assessed in vitro for its ability to inhibit the development of the main mycotoxigenic species and related mycotoxins. Results and Discussion: Aspergillus flavus and A. carbonarius were significantly reduced by pear (from -45 to -47%) and grape marc (from -21 to -51%) extracts, while F. graminearum was shown to be highly influenced by grape stalk, pear, and grape marc extracts (-24% on average). On the contrary, F. verticillioides was inhibited only by pear (-18%) and to a very low and negligible extent by apple (-1%) and green beans (-3%). Regarding the reduction of mycotoxins, the extracts were able to inhibit OTA from 2 to 57%, AFB1 from 5 to 75%, and DON from 14 to 72%. The highest percentages of reduction were obtained against FBs (from 11 to 94%), ZEN (from 17 to 100%), and Alternaria toxins (from 7 to 96%). In conclusion, this work provided promising results for the production of bioactive extracts obtained from agri-food by-products, which could be exploited as potential biofungicides against the development of mycotoxigenic fungi and related mycotoxins.

2.
Front Microbiol ; 13: 1035561, 2022.
Article in English | MEDLINE | ID: mdl-36439796

ABSTRACT

While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.

3.
Bioresour Technol ; 351: 126934, 2022 May.
Article in English | MEDLINE | ID: mdl-35248711

ABSTRACT

Bioplastics may be collected in the bio-waste treatment, which is often composed of anaerobic digestion and subsequent aerobic composting of the digestates. The aim of this study was to evaluate the degradability of polylactic acid (PLA) and starch-based bioplastics (SBB) spoons under industrial conditions. Biomethane potential (BMP) was measured and biogas production was monitored, while the quality of composts was assessed by phytotoxicity and ecotoxicity tests. The bioplastics disintegration resulted in 65.1 ± 4.6 % for PLA and ≤ 65.0 ± 7.4 % for SBB, not achieving the target set by UNI EN 13,432 standard, and several residues were found in compost. Phytotoxicity tests on seeds reported the lowest Germination Index for PLA elutriate, whereas a potential negative effect of SBB on soil fauna was detected. Further investigation is needed to assess the fate of these ever-growing materials under industrial conditions, and also evaluate the effects of residues in compost.


Subject(s)
Composting , Anaerobiosis , Polyesters , Soil , Starch
4.
AMB Express ; 10(1): 102, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32488433

ABSTRACT

Biogas plants are a widespread renewable energy technology. However, the use of digestate for agronomic purposes has often been a matter of concern. It is controversial whether biogas plants might harbor some pathogenic clostridial species, which represent a biological risk. Moreover, the inhabitance of Clostridium hard-cheese spoiling species in anaerobic digesters can be problematic for hard-cheese manufacturing industries, due to the issue of cheese blowing defects. This study investigated the effect of mesophilic anaerobic digestion processes on the Clostridium consortia distribution over time. Specifically, three lab-scale CSTRs treating agricultural biomass were characterized by considering both the whole microbial community and the cultivable clostridial spores. It is assessed an overall reduction of the Clostridium genus during the anaerobic digestion process. Moreover, it was evidenced a slight, but steady decrease of the cultivable clostridial spores, mainly represented by two pathogenic species, C. perfringens and C. bifermentans, and one hard-cheese spoiling species, C. butyricum. Thus, it is revealed an overall reduction of the clostridial population abundance after the mesophilic anaerobic digestion treatment of agricultural biomass.

5.
Bioresour Technol ; 265: 554-557, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29861299

ABSTRACT

In this study, the possibility to manage maize contaminated with aflatoxins and fumonisins for the production of biogas was considered. This is a priority in the climate change scenario that is expected to increase the occurrence of aflatoxins in maize. The results clearly underline how the anaerobic digestion process used in biogas plants is able to reduce aflatoxin contamination, mainly when highly contaminated maize is used for feeding the biodigestors without affecting the efficiency of methane production. In particular, the higher aflatoxin contamination is, the higher is mycotoxin reduction during biodigestion, with reductions up to 95% in digestate. The co-occurring mycotoxins, fumonisins, were also reduced by around 15%. The vitality of mycotoxin producing fungi was also significantly reduced. Biogas production is therefore suggested as a good alternative use for uncompliant maize.


Subject(s)
Food Contamination , Mycotoxins/metabolism , Zea mays , Aflatoxins , Fumonisins , Fungi
6.
Waste Manag ; 78: 566-575, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559946

ABSTRACT

Within Circular Economy principles, this paper analyses and estimates exploitable marine residues, such as fish waste and stranded debris in beaches and their potential valorisation scenarios. The Emilia-Romagna Region (Italy) has been chosen as a case study. Based on the sold fish, about 200 Mg/year of fish waste are produced at the five major fish markets of the Region. Including all regional fish processing plants and retail trade, the estimated availability of fish waste increases up to 30,000 Mg/year. Stranded beach debris collected by mechanical cleaning operations are currently deposited in landfill. About 63,000 Mg/year of sieved debris are collected each year, out of which the recoverable fractions consist of 19,000 Mg/year of organic material, 8,000 Mg/year of shells and 5,200 Mg/year of stones. Classification and valorisation routes for these residual biomasses are proposed and their applicability to other regions discussed. In order to investigate the possible use in anaerobic digestion plants and the effects on biogas production, Biochemical Methane Potential (BMP) assays have been carried out with fish waste samples and with organic material found in marine debris. Salt content in driftwood has been quantified to assess its potential use in Combined Heat and Power (CHP) plants. Proposed valorisation routes for shells and stones include the production of calcium carbonate (cement industry, wastewater treatment and mulching) and the application in building industry, respectively.

7.
Appl Biochem Biotechnol ; 184(4): 1200-1218, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28980222

ABSTRACT

In this work, a modified swirling jet-induced cavitation has been employed for increasing anaerobic digestion efficiency of cattle manure. The hydrodynamic cavitation (HC) treatment improved the organic matter solubilization and the anaerobic biodegradability of cattle manure. The degree of disintegration increased by 5.8, 8.9, and 15.8% after the HC treatment at 6.0, 7.0, and 8.0 bars, respectively. However, the HC treatment at 7.0 bars had better results in terms of methane production. This result may be attributed to the possible formation of toxic and refractory compounds at higher inlet pressures, which could inhibit the methanization process. Further, total Kjeldahl nitrogen content was found to decrease with increasing inlet pressures, as the pH and the turbulent mixing favored the ammonia stripping processes. HC treatment decreased the viscosity of the treated cattle manure, favoring the manure pumping and mixing. Considerations on the energy input due to the HC pre-treatment and the energy output due to the enhanced methane yield have been presented. A positive energy balance can be obtained looking at the improved operational practices in the anaerobic digesters after the implementation of the HC pre-treatment.


Subject(s)
Manure/microbiology , Anaerobiosis , Animals , Cattle , Hydrodynamics , Hydrogen-Ion Concentration , Pressure , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...