Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Mhealth Uhealth ; 8(10): e19070, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32788142

ABSTRACT

BACKGROUND: Pediatric cardiac arrest (PCA), although rare, is associated with high mortality. Deviations from international management guidelines are frequent and associated with poorer outcomes. Different strategies/devices have been developed to improve the management of cardiac arrest, including cognitive aids. However, there is very limited experience on the usefulness of interactive cognitive aids in the format of an app in PCA. No app has so far been tested for its usability and effectiveness in guiding the management of PCA. OBJECTIVE: To develop a new audiovisual interactive app for tablets, named PediAppRREST, to support the management of PCA and to test its usability in a high-fidelity simulation-based setting. METHODS: A research team at the University of Padova (Italy) and human-machine interface designers, as well as app developers, from an Italian company (RE:Lab S.r.l.) developed the app between March and October 2019, by applying an iterative design approach (ie, design-prototyping-evaluation iterative loops). In October-November 2019, a single-center nonrandomized controlled simulation-based pilot study was conducted including 48 pediatric residents divided into teams of 3. The same nonshockable PCA scenario was managed by 11 teams with and 5 without the app. The app user's experience and interaction patterns were documented through video recording of scenarios, debriefing sessions, and questionnaires. App usability was evaluated with the User Experience Questionnaire (UEQ) (scores range from -3 to +3 for each scale) and open-ended questions, whereas participants' workload was measured using the NASA Raw-Task Load Index (NASA RTLX). RESULTS: Users' difficulties in interacting with the app during the simulations were identified using a structured framework. The app usability, in terms of mean UEQ scores, was as follows: attractiveness 1.71 (SD 1.43), perspicuity 1.75 (SD 0.88), efficiency 1.93 (SD 0.93), dependability 1.57 (SD 1.10), stimulation 1.60 (SD 1.33), and novelty 2.21 (SD 0.74). Team leaders' perceived workload was comparable (P=.57) between the 2 groups; median NASA RTLX score was 67.5 (interquartile range [IQR] 65.0-81.7) for the control group and 66.7 (IQR 54.2-76.7) for the intervention group. A preliminary evaluation of the effectiveness of the app in reducing deviations from guidelines showed that median time to epinephrine administration was significantly longer in the group that used the app compared with the control group (254 seconds versus 165 seconds; P=.015). CONCLUSIONS: The PediAppRREST app received a good usability evaluation and did not appear to increase team leaders' workload. Based on the feedback collected from the participants and the preliminary results of the evaluation of its effects on the management of the simulated scenario, the app has been further refined. The effectiveness of the new version of the app in reducing deviations from guidelines recommendations in the management of PCA and its impact on time to critical actions will be evaluated in an upcoming multicenter simulation-based randomized controlled trial.


Subject(s)
Heart Arrest , High Fidelity Simulation Training , Mobile Applications , Child , Heart Arrest/diagnosis , Heart Arrest/therapy , Humans , Italy , Pilot Projects
2.
J Vis Exp ; (130)2017 12 14.
Article in English | MEDLINE | ID: mdl-29286382

ABSTRACT

Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.


Subject(s)
Nuclear Power Plants , Nuclear Reactors/instrumentation , Radioactive Hazard Release , Spectrum Analysis/methods , Humans , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...