Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Exp Toxicol Pathol ; 58(5): 339-49, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17270411

ABSTRACT

To assess renal and liver damages in pregnant and lactating mice as well as in their suckling pups, Wistar female mice were given 500 ppm NaF (226 ppm F-) in drinking water from the 15th day of pregnancy until day 14 after delivery. All mice were sacrificed on day 14 after parturition. In the present work, we evaluated the effects of sodium fluoride on histopathological aspects of kidney, antioxidant status, lipid peroxidation levels and on the expression of four stress proteins (namely, the cytosolic heat shock proteins: HSP72, 73, 90 and the reticulum-associated GRP94). Histological studies have shown many abnormalities in mothers and their pups. Biochemical results showed that lipid peroxidation increased in NaF-treated mice, as evidenced by high kidney and liver thiobarbituric acid reactive substance (TBARS) levels. Alteration of the antioxidant system was confirmed by the significant decline of serum total antioxidant status and of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in red blood cells. Besides, fluoride treatment induced a decrease in serum levels of non-enzymatic antioxidants such as uric acid and of some oligoelements: zinc and copper, known to be cofactors of superoxide dismutase (SOD-Cu-Zn). Compared to control group, the 72kDa protein was found to be overexpressed in kidney of 14-day-old mice only. HSP90 expression in liver appeared moderately inhibited in mothers, but decreased significantly in their pups. No significant changes were detected in the expression of 94kDa protein in both liver and kidney. Results showed that fluoride given to dams led to an oxidative stress in mothers as well as in offspring able to induce enhanced lipid peroxidation levels and protein conformational changes, as suggested by stress protein (HSP, GRP) expression changes.


Subject(s)
Kidney/drug effects , Liver/drug effects , Maternal Exposure/adverse effects , Oxidative Stress/drug effects , Sodium Fluoride/toxicity , Animals , Animals, Suckling , Antioxidants/metabolism , Copper/blood , Female , Heat-Shock Proteins/biosynthesis , Kidney/enzymology , Kidney/metabolism , Kidney/pathology , Lipid Peroxides/metabolism , Liver/enzymology , Liver/metabolism , Liver/pathology , Male , Maternal-Fetal Exchange , Mice , Mice, Inbred Strains , Pregnancy , Sodium Fluoride/pharmacokinetics , Uric Acid/blood , Zinc/blood
2.
C R Biol ; 329(10): 775-84, 2006 Oct.
Article in French | MEDLINE | ID: mdl-17027638

ABSTRACT

Transitional metals, as vanadium, are known to exert noxious effects by generating oxidative stress. Addition of antioxidants in the diet could decrease the cytotoxic effect related to the oxidative stress. The present study, carried out in Wistar rats, is a contribution to the evaluation of protective effects of green tea Camellia sinensis, which is known to be rich in antioxidant compounds (polyphenols...). Rats were divided into four groups: (C) was control, (V) was given ammonium metavanadate (AMV), (TH) was given herbal tea as drink (66 g/l) and TH + V was given tea and metavanadate. Group (TH) was given herbal tea one month before vanadium treatment. Metavanadate was daily i.p. injected (5 mg NH4VO3/kg body weight) for 10 days. (C) and (TH) groups received i.p. injections of 0.9% NaCl during the same period. Changes in lipid peroxidation levels (TBARS) in kidney, liver and testes, serum concentrations of vitamins E and A and superoxidismutase (SOD) and catalase (CAT) activities in blood cells were determined. One month pre-treatment with green tea, followed by 10 days of treatment (TH) did not change TBARS in liver and testes as compared to controls, but induced a clear decrease of TBARS in kidneys. Intraperitoneal administration of AMV to rats (V) induced a time-dependant increase of TBARS in kidney, liver and testes that was lowered in rats (V + TH) drinking tea. Vitamin E concentrations were found to be drastically decreased from day 1 to 10 in rats (V). Vitamin A concentration was decreased at day 10 only. Drinking tea lowered AMV inhibitory effects in rats (V + TH), and conversely an increase of vitamins A and E concentrations were found at day 10. SOD and catalase activities were found increased in the blood cells from day 1 to day 5 and conversely decreased at day 10. In contrast, associated to green tea, AMV did not affect SOD and catalase activities compared to controls.


Subject(s)
Camellia sinensis , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Vanadates/pharmacology , Animals , Catalase/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/physiology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Vitamin A/metabolism , Vitamin E/metabolism
3.
Biochim Biophys Acta ; 1760(1): 95-103, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16271832

ABSTRACT

Three carbamate (formetanate, methomyl, pyrimicarb) and one pyrethroid (bifenthrin) insecticides were investigated both as pure chemicals and as commercial formulations in order to unveil possible toxic effects of additives and solvents present in the commercial formulations and to evaluate the cellular stress response as a defense mechanism. Toxic effects were evaluated on A549 cells, derived from a human lung carcinoma, by measuring (1) threshold concentrations leading to a decrease of the growth rate (LOEC), (2) sublethal concentrations (SC) which arrested growth without killing the cells, and (3) expression levels of several stress proteins, i.e., HSP27, HSP72/73, HSP90, GRP78, and GRP94. As compared to the pure active molecule, LOEC appeared at lower concentrations when using the commercial formulations, i.e., Dicarzol (formetanate), Lannate20 (methomyl) and Talstar or Kiros EV (bifenthrin). Propylene glycol and propylene glycol monomethyl ether, respectively, present in Talstar and kiros, do not account for the high toxicity of these commercial formulations and do not potentiate the toxicity of bifenthrin. Additive but not synergistic adverse effects were observed when cells are exposed to a mixture of 4 different commercial formulations. Our results show that the concentrations of active molecules recommended in flori-cultural general use or for spray preparations are much higher than SC concentrations, as determined on A549 pulmonary cells. GRP78 was up-regulated by all the insecticides, commercial preparations being more efficient to trigger the stress reaction. This suggests that insecticides and additives present in commercial formulations disrupt ER functions. Conversely, HSP72/73 was found to be down-regulated by all the insecticides. This seems to be related with a decrease of protein synthesis in the cytosol, as a result of the ER unfolded protein response. Indeed, tunicamycin, known to inhibit N-linked glycosylation in the ER, was found to induce a similar inverse correlation between GRP78 overexpression and HSP72/73 under-expression. Expression of GRP94 was found to be increased and HSP27 lowered by the highest concentrations of bifenthrin commercial formulations. Methomyl and Lannate20 only induced an under-expression of HSP90.


Subject(s)
Gene Expression Regulation/drug effects , Heat-Shock Proteins/genetics , Insecticides/toxicity , Molecular Chaperones/genetics , Stress, Physiological/chemically induced , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , HSP72 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins , Protein Serine-Threonine Kinases
4.
C R Biol ; 328(10-11): 900-11, 2005.
Article in French | MEDLINE | ID: mdl-16286079

ABSTRACT

The present study, carried out in rats, is a contribution to explore physiological mechanisms underlying lithium toxicity. Male and female mature rats were divided into three groups and fed on commercial pellets: group (C) was control, group (Li1) was given 2000 mg lithium carbonate/kg of food, and group (Li2) was given 4000 mg lithium carbonate/kg of food. If we take into account the BW of the rats and the quantity of food they eat every day, we can estimate that the quantities of lithium carbonate ingested per day and kilogram of BW are, respectively, for the groups Li1 and Li2, of 212 mg (5,738 mmol Li) and 323 mg (8,742 mmol Li) for the males, and about 190 mg (5,142 mmol Li) and 289 mg (7,822 mmol Li) for the females. After 7, 14, 21 and 28 days, serum concentrations of lithium, creatinine, free triiodothyronine (FT3) and thyroxine (FT4), testosterone and estradiol were measured. Attention was also paid to growth rate and a histological examination of testes or vaginal mucosa was carried out. In treated rats, a dose-dependent loss of appetite and a decrease in growth rate were observed together with polydipsia, polyuria, and diarrhoea. Lithium serum concentrations were found to increase from 0.44 mM (day 7) to 1.34 mM (day 28) in Li1 rats and from 0.66 to 1.45 mM (day 14) in Li2 rats. Treatment was stopped at day 14 in Li2 rats because of a high mortality. The significant increase of creatinine that appeared, respectively, at day 7 and 14 in Li2 and Li1 rats shows that serum lithium concentrations ranging from 0.62 to 0.75 mM were able to induce renal insufficiency, secondarily leading to a time-dependent rise in lithium serum concentrations. A significant decrease of serum thyroxine (FT4) and triiodothyronine (FT3) levels was observed for lithium concentrations ranging from: 0.66 to 0.75 mmol l(-1) (Li2 rats) to 1.27 mmol l(-1) (Li1 rats). This effect was more pronounced for FT3, suggesting a defect of FT4/FT3 conversion. Under lithium treatment, the testosterone level decreased and spermatogenesis was stopped. By contrast, in treated female rats, estradiol level was found to be increased in a dose-dependent manner and animals were blocked in the diestrus phase at day 28. These results show that lithium can rapidly induce toxic effects in the rat at concentrations used for the treatment of bipolar disorders in human.


Subject(s)
Kidney/physiology , Lithium/blood , Lithium/deficiency , Sexual Behavior, Animal/physiology , Thyroid Gland/physiology , Animals , Body Weight/physiology , Creatinine/blood , Eating/physiology , Estrous Cycle/physiology , Female , Gonadal Steroid Hormones/blood , Male , Rats , Rats, Wistar , Testis/anatomy & histology , Thyroid Hormones/blood
5.
C R Biol ; 328(7): 648-60, 2005 Jul.
Article in French | MEDLINE | ID: mdl-15992748

ABSTRACT

This study has been undertaken with the aim of determining if intermittent fasting can be considered as a malnutrition that amplifies, according to numerous authors, the cytotoxic effects of environmental pollutants. We have used 200 male and female rats of 'Wistar' descent (BW approximately 180 g). These rats are distributed into two groups: some nourished daily (N) and others nourished one day over two (J) during a month. By the end of this month, each group is itself split into two subgroups, the first one receiving tap water as drinkable water (group NO and JO); the other one receiving the water enriched by the chloride of nickel at the rate of 100 mg NiCl2 per litre (groups NNi and JNi). Intermittent fasting goes on parallel to treatment during 2, 4, 10, 16, 30 and 60 days. For the exploration of the protein of stress (HSP) and of the metallothioneines (MT), the nickel is administered by injection at the rate of 4 mg NiCl2 per kg during 1 and 5 days. Our results show that the mineral seric and renal balance does not vary in conditions of intermittent fasting compared with conditions of normal nutrition. Our study show than that nickel induced a renal deficiency by decreasing the creatinemia and uraemia rate, which is confirmed by the histological study, and induced a decrease in the induction of the HSP73 and in the synthesis of the (MT). The association of nickel with intermittent fasting would inhibit these effects. In conclusion, intermittent fasting does not manifest itself as a malnutrition that amplifies the nickel's effects. Nevertheless, it seems that the calorific lack provoked by intermittent fasting is beneficial to the body by increasing its performances against the cytotoxic effects induced by nickel.


Subject(s)
Fasting/physiology , Kidney/pathology , Nickel/toxicity , Sexual Maturation/physiology , Animals , Creatinine/urine , Female , Kidney/drug effects , Male , Rats , Rats, Wistar , Sex Characteristics
6.
J Toxicol Environ Health A ; 68(9): 703-18, 2005 May 14.
Article in English | MEDLINE | ID: mdl-16020198

ABSTRACT

This study was designed to explain the basis for Cd-acquired tolerance of A549 cells cultured in the presence of Cd. Thirty-day exposure of cultured human pneumocytes (A549 cell line) to 10 microM Cd was previously found to induce an acquired resistance persisting over several weeks of culture. Moreover, these Cd-resistant cells (R-cells) were found to proliferate faster than controls. No difference was found between R-cells and control cells (S-cells) concerning the basal and Cd-induced level of metallothioneins expression. However, after exposure to Cd, cell glutathione levels were unchanged in R-cells while they were either increased (at 10 microM Cd) or decreased (at 25 microM Cd) in S-cells. cDNA array analysis showed that genes encoding for (GPx1) glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were similarly expressed in R- and S-cells, whereas the gene of (GPx2) glutathione peroxidase was overexpressed in R-cells. Most genes encoding stress proteins were similarly expressed, except for HSP27 and GRP94 genes, which were respectively under- (ratio 0.5 +/- 0.1) and over- (1.8 +/- 0.5) expressed in R-cells. Acute exposure to Cd was found to trigger the upregulation of genes encoding the chaperone proteins HSP90A, HSP27, HSP40, GRP78, HSP72, and HO-1 in S-cells. In R-cells, only HO-1 and HSP72 were overexpressed but at a lower level. This suggests that the Cd-related adverse conditions, leading to protein misfolding, are lowered in R-cells. It is likely that the upregulation of GPx2 in R-cells leads to a higher antioxidant defense in these cells.


Subject(s)
Cadmium/toxicity , Glutathione/metabolism , Oxidative Stress/genetics , Adenocarcinoma , Endoplasmic Reticulum Chaperone BiP , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , Tumor Cells, Cultured
7.
C R Biol ; 325(9): 927-40, 2002 Sep.
Article in French | MEDLINE | ID: mdl-12481686

ABSTRACT

This study deals with the impact of chronic exposure to lead on male and female fertility in rats. Male and female rats (3 months old) were fed on commercial tablets (SICO, Sfax). For drinking, some rats were given distilled water (T = controls), the other ones were given distilled water enriched with lead acetate, either 3 (P1 group) or 6 mg ml-1 (P2 group), for 15, 30, 45, 60 or 90 days. In male rats, absolute and relative weights of testis, epididymis, prostate and seminal vesicles were found to significantly decrease at day 15 in the P2 group and at day 45 in the P1 group. However, at day 60, these absolute and relative weights returned to control values. Lead-induced pathological changes in spermatogenesis were observed at day 15 by histological study: arrest of cell germ maturation, changes in the Sertoli cells, and presence of apoptotic cells revealed by borated toluidine blue in the testis. Presence of lead deposits was observed after histochemical staining using sodium rhodizonate. Serum testosterone level was found to be lowered at day 15 in both (P1) and (P2) groups, to display a peak at day 60, then to return to controls values, in spite of the continuation of the treatment. In female rats, absolute and relative weights of ovary and uterus were found unchanged. The vaginal smears practiced in females revealed the oestrus phase in all groups. Exposed females were mated with control males, and fecundity was assessed 15 days later by counting the number of pregnancies and the number of concepti per pregnancy. Fertility was found to be reduced in females of P1 and P2 groups as compared to control females (T group). Lead level in blood was found to be poorly correlated with the level of poisoning, whereas lead accumulation in tail was found to be dose-dependent. Therefore, lead accumulation in tail appears as a more reliable biomarker of exposure to lead. In summary, our study shows that chronic exposure to lead causes a double sexual disorder in rats: first, disorder deals with the hormonal function, which is affected at the early stages of poisoning, but is rapidly corrected; second, disorder deals with the genital tract, affecting the testis and the ovary, resulting in a reduced fertility in both P1 and P2 females, in spite of the presence of a normal oestrus. The cytotoxic effect of lead in males seems to be related to an apoptotic process.


Subject(s)
Apoptosis/drug effects , Infertility, Female/chemically induced , Infertility, Male/chemically induced , Lead Poisoning/complications , Reproduction/drug effects , Sexual Maturation/drug effects , Administration, Oral , Animals , Chelating Agents/pharmacology , Cyclohexanones/pharmacology , Estrous Cycle/drug effects , Female , Genitalia, Female/drug effects , Genitalia, Female/pathology , Genitalia, Male/drug effects , Genitalia, Male/pathology , Infertility, Female/physiopathology , Infertility, Male/physiopathology , Lead/blood , Lead/pharmacokinetics , Lead/toxicity , Lead Poisoning/physiopathology , Litter Size/drug effects , Male , Organ Size/drug effects , Rats , Rats, Wistar , Spermatogenesis/drug effects , Tail/chemistry , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...