Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 50: 105-109, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29055244

ABSTRACT

BACKGROUND: Mechanical properties of tissue-engineered cartilage and a variety of endogenous cartilage were measured. The main goal was to evaluate if the tissue-engineered cartilage have similar mechanical characteristics to be replaced with rib cartilage in microtia reconstruction. Such study lays the foundation for future human clinical trials for microtia reconstruction. METHOD: Atomic force microscopy and compression testing were used to measure the viscoelasticity of tissue-engineered cartilage (stem cell seeded on Poly lactic co-glycolytic acid nanofibers and Pellet) and endogenous cartilage: conchal bowl, microtic ears, preauricular remnants, and rib. Atomic force microscopy, calculates biomaterial elasticity through force-deformation measurement and Hertz model. Compression testing determines the stress relaxation by measuring slope of stress reduction at 10% strain. FINDING: Tissue-engineered cartilage demonstrated elasticity (4.6kPa for pellet and 6.6kPa for PLGA) and stress relaxation properties (7.6 (SD 1.1) kPa/s for pellet) most similar to those of native conchal bowl cartilage (31.8 (SD 18) kPa for the elasticity and 15.1 (SD 2.1) kPa/s for stress relaxation factor). Rib cartilage was most dissimilar from the mechanical characteristics of conchal cartilage and demonstrated the highest elastic modulus (361 (SD 372) kPa). Moreover, except preauricular cartilage samples, the level of elastic modulus increased with age. INTERPRETATION: The use of tissue-engineered cartilage developed via PLGA and Pellet methods, may be an appropriate substitute for rib cartilage in the reconstruction of microtic ears, however their mechanical characteristics still need to be improved and require further validation in animal studies.


Subject(s)
Cartilage/physiology , Chondrocytes/physiology , Chondrogenesis , Biocompatible Materials , Biomechanical Phenomena , Elastic Modulus , Elasticity , Humans , Microscopy, Atomic Force , Pilot Projects , Polyethylene Glycols/chemistry , Stress, Mechanical , Tissue Engineering/methods
2.
Micron ; 101: 206-212, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28804049

ABSTRACT

Stem cells images are a strong instrument in the estimation of confluency during their culturing for therapeutic processes. Various laboratory conditions, such as lighting, cell container support and image acquisition equipment, effect on the image quality, subsequently on the estimation efficiency. This paper describes an efficient image processing method for cell pattern recognition and morphological analysis of images that were affected by uneven background. The proposed algorithm for enhancing the image is based on coupling a novel image denoising method through BM3D filter with an adaptive thresholding technique for improving the uneven background. This algorithm works well to provide a faster, easier, and more reliable method than manual measurement for the confluency assessment of stem cell cultures. The present scheme proves to be valid for the prediction of the confluency and growth of stem cells at early stages for tissue engineering in reparatory clinical surgery. The method used in this paper is capable of processing the image of the cells, which have already contained various defects due to either personnel mishandling or microscope limitations. Therefore, it provides proper information even out of the worst original images available.

3.
Tissue Eng Part C Methods ; 23(12): 889-899, 2017 12.
Article in English | MEDLINE | ID: mdl-28747097

ABSTRACT

Alveolar (gumline) clefts are the most common congenital bone defect in humans, affecting 1 in 700 live births. Treatment to repair these bony defects relies on autologous, cancellous bone transfer from the iliac crest. This harvest requires a second surgical site with increased surgical time associated with potential complications, while providing only limited cancellous bone. Improvements in treatment protocols that avoid these limitations would be beneficial to patients with clefts and other craniofacial bone defects. There have been steady advances in tissue-engineered (TE) solutions for long-bone defects and adult patients, but advances for the pediatric craniofacial skeleton have been slower to emerge. This study utilizes a previously established juvenile swine model with a surgically created, critical size alveolar defect to test the efficacy of umbilical cord (UC) mesenchymal stem cells (MSCs) treatments on nano-microfiber scaffolds. At 1 month after implanting our TE construct, mineralized tissue in the surgical gap was quantified through computed tomography (CT), and histology, and excised tissue was subjected to mechanical testing. Both undifferentiated and predifferentiated (toward an osteogenic lineage) UC MSCs generated bone within the cleft on a scale comparable to iliac crest cancellous bone, as evidenced by histology and CT scans. All of the pigs treated with scaffold/stem cell combinations had mineralized tissue within the defect, although without filling the entire defect. Several of the experimental animals exhibited poor and/or asymmetric maxillary growth 1 month after the initial surgery, especially if the surgical defect was located on the smaller side of an already asymmetric pig. Our results demonstrate that tissue engineering approaches using UC MSCs are a promising alternative for repair of the alveolar cleft. Data in the pig model demonstrate that implanted scaffolds are at least as good as the current gold standard treatment based on harvesting cancellous bone from the iliac crest, regardless of whether the cells seeded on the scaffold are precommitted to an osteogenic fate.


Subject(s)
Alveolar Process/abnormalities , Osteogenesis , Tissue Engineering/methods , Alveolar Process/diagnostic imaging , Alveolar Process/pathology , Animals , Biomechanical Phenomena , Disease Models, Animal , Elastic Modulus , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Swine , Tomography, X-Ray Computed , Umbilical Cord/cytology
4.
Biomed Tech (Berl) ; 61(3): 337-44, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26351782

ABSTRACT

It is important to thoroughly remove the thrombus within the course of aspiration thrombectomy; otherwise, it may lead to further embolization. The performance of the aspiration thrombectomy device with a generic geometry is studied through the computational approach. In order to model the thrombus aspiration, a real left coronary artery is chosen while thrombi with various sizes are located at the bifurcation area of the coronary artery and, depending on the size of the thrombus, it is stretched toward the side branches. The thrombus occupies the artery resembling the blood current obstruction in the coronary vessel similar to the situation that leads to heart attack. It is concluded that the aspiration ability of the thrombectomy device is not linked to the thrombus size; it is rather linked to the aspiration pressure and thrombus age (organized versus fresh thrombus). However, the aspiration time period correlates to the thrombus size. The minimum applicable aspiration pressure is also investigated in this study.


Subject(s)
Paracentesis/methods , Thrombectomy , Thrombosis , Humans , Hydrodynamics , Treatment Outcome
5.
Artif Organs ; 38(10): 845-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24571089

ABSTRACT

According to a number of clinical studies, coronary aspiration catheters are useful tools to remove a thrombus (blood clot) blocking a coronary artery. However, these thrombectomy devices may fail to remove the blood clot entirely. Few studies have been devoted to a systematic analysis of factors affecting clot aspiration. The geometric characteristics of the aspiration catheter, the physical properties of the thrombus, and the applied vacuum pressure are crucial parameters. In this study, the aspiration of a blood clot blocking a coronary bifurcation is computationally simulated. The clot is modeled as a highly viscous fluid, and a two-phase (blood and clot) problem is solved. The effects of geometric variations in the tip of the coronary catheter, including lateral hole size and location, are investigated considering different aspiration pressures and clot viscosities. A Bird-Carreau model is adopted for blood viscosity, while a power law model is used to describe the clot rheology. Computational results for blood clot aspiration show that the presence of holes in the lateral part of the tip of the catheter can be beneficial depending on clot viscosity, hole features, and applied aspiration pressure. In general, the holes are beneficial when the clot viscosity is low, while aspiration catheters without any extra lateral holes exhibit better performance for higher clot viscosity. However, when higher aspiration pressures are applied, the catheters tend to behave relatively similarly in removing clots with various viscosities, reducing the role of the clot viscosity.


Subject(s)
Catheters , Computer Simulation , Coronary Thrombosis/surgery , Equipment Design , Models, Cardiovascular , Thrombectomy/instrumentation , Humans , Suction/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...