Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18659, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907654

ABSTRACT

Enzootic bovine leukosis virus (BLV) and bovine herpesvirus 1 (BHV-1) are very important infectious agents for the livestock industry worldwide. The present study aimed to explore the association between natural exposure to BLV and BHV-1 with sperm quality analyzed by Computer-Assisted Semen Analysis (CASA) systems. Ten sexually mature Brahman bulls, with sanitary status BLV+/BHV-1+ (n = 2), BLV-/BHV-1+ (n = 6) and BLV-/BHV-1- (n = 2) were evaluated twice, 30 days apart. Results showed that sanitary status of each bull was not associated with semen quality. It was found that the quality of the semen from the second collection was better due to the interruption of sexual rest. The evidence thus revealed that a bull infected with BLV generated good-quality contaminated semen and, therefore, that it is essential to detect contaminated seminal samples to prevent the spread of BLV. A multivariate analysis showed the presence of four sperm subpopulations in Brahman bulls that differ significantly in their kinematic patterns and with respect to sanitary status (P < 0.05), indicating that infection-free and seronegative bulls present the best kinematic parameters, which improved discrimination of sperm quality according to sanitary status. Overall, the analyses indicate that the seropositive-infected bulls with BLV and BHV-1 should be excluded from beef cattle farms.


Subject(s)
Cattle Diseases , Herpesvirus 1, Bovine , Leukemia Virus, Bovine , Male , Animals , Cattle , Semen Analysis , Semen
2.
J Proteome Res ; 22(11): 3607-3624, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37782577

ABSTRACT

The prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high- (HF; n = 5) and low-field (LF; n = 5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by computer-assisted sperm analysis. Sperm viability, mitochondrial membrane potential (MMP) and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by the SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed a higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly the OXPHOS pathway, and the development of structures linked with the motility process (TPPP2, SSMEM1, and SPAG16). Furthermore, we observed that equatorin (EQTN), together with other DAPs related to the interaction with the oocyte, was overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP. Data are available via ProteomeXchange with identifier PXD042286.


Subject(s)
Proteome , Semen , Male , Cattle , Animals , Proteome/genetics , Proteome/metabolism , Proteomics , Sperm Motility , Spermatozoa/metabolism , Fertility , Sperm-Ovum Interactions
3.
Reprod Domest Anim ; 58(10): 1439-1447, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37603017

ABSTRACT

The identification of different morphometric patterns of spermatozoa serves as a basis for improving our understanding of the diversity in an ejaculate and to relate them to the potential fertility of males. In this study, we aimed to examine the semen subpopulation structure, following dilution in semen of extenders, using a mathematical approach a possible application to fertility analyses. Ten sexually mature Bos taurus bulls were randomly allotted to one of three groups: (1) Tris-citric acid-egg yolk extender (Tris-EY); (2) commercial egg yolk extender OptiXcell® and (3) commercial egg yolk extender Triladyl®. The results showed significant differences (p < .05) between extenders in terms of values for head size and head shape variables of individual sperm, indicating an influence of extender composition. Sperm head width was found to significantly differ (p < .05) according to the extender, decreasing in the following order: OptiXcell® (4.836 ± 0.017 µm), Triladyl® (4.695 ± 0.012 µm) and Tris-EY (4.638 ± 0.010 µm). Principal component analysis allowed us to identify two subpopulations in OptiXcell®, and three subpopulations were each found in Triladyl® and Tris-EY. Overall, we observed significant differences between sperm subpopulations within each extender (p < .05), with differences in sperm head size and shape between bovine species that can be related to functionality and fertility capabilities.

4.
Rev. int. androl. (Internet) ; 21(2): 1-9, abr.-jun. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-218837

ABSTRACT

Introduction: Human semen analysis must be performed after the liquefaction of the ejaculate. This takes place about 30min after ejaculation and samples must be maintained in the lab during this time. The temperatures for this incubation and the final analysis of motility are crucial but seldom taken into account. This study aims to examine the effect of these temperatures on various sperm parameters both manually (sperm count, motility, morphology, viability, chromatin condensation and maturation and DNA fragmentation) and CASA (kinematics and morphometrics, using an ISAS®v1 CASA-Mot and CASA-Morph systems, respectively) analyzed. Methods: Seminal samples from thirteen donors were incubated for 10min at 37°C followed by additional 20min at either room temperature (RT, 23°C) or 37°C and then examined following WHO 2010 criteria. Results: The data obtained show that there were no significant differences (P>0.05) in the subjective sperm quality parameters with incubation temperature. On the other hand, the head sperm morphometric parameters were significantly higher after room temperature incubation showing, in addition, lower ellipticity (P<0.05). Furthermore, kinematic parameters were evaluated both at RT and 37°C for the two incubation temperatures. In general, the four temperature combinations showed that kinematic parameters followed this order: RT-RT Conclusions: Our results showed that temperature control during both incubation and analysis is needed for accurate semen analysis, recommending the use of 37°C during the entire process. (AU)


Introducción: El análisis de semen humano debe realizarse después de la licuefacción del eyaculado. Esto ocurre aproximadamente a los 30minutos después de la eyaculación. Las temperaturas para esta incubación y el análisis final de la motilidad son cruciales, pero rara vez se tienen en cuenta. Este estudio tiene como objetivo examinar el efecto de estas temperaturas en varios parámetros de los espermatozoides tanto de forma manual (recuento de espermatozoides, motilidad, morfología, viabilidad, condensación y maduración de la cromatina y fragmentación del ADN) como CASA (cinemática y morfometría, utilizando un CASA-Mot ISAS®v1 y Sistemas CASA-Morph, respectivamente) analizados. Métodos: Las muestras seminales de 13 donantes se incubaron durante 10minutos a 37°C, seguidas de 20minutos adicionales a temperatura ambiente (TA, 23°C) o a 37°C y luego se examinaron siguiendo los criterios de la OMS 2010. Resultados: Los datos obtenidos muestran que no hubo diferencias significativas (p>0,05) en los parámetros subjetivos de calidad del esperma con la temperatura de incubación. Por otro lado, los parámetros morfométricos de la cabeza de los espermatozoides fueron significativamente más altos después de la incubación a temperatura ambiente, mostrando, además, una elipticidad más baja (p<0,05). Además, los parámetros cinemáticos se evaluaron tanto a temperatura ambiente como a 37°C para las dos temperaturas de incubación. En general, las cuatro combinaciones de temperatura mostraron que los parámetros cinemáticos siguieron este orden: RT-RT < RT-37 < 37-37 < 37-RT (temperaturas de incubación y análisis, respectivamente). Conclusiones: Nuestros resultados mostraron que el control de la temperatura durante la incubación y el análisis es necesario para un análisis de semen preciso, recomendando el uso de 37°C durante todo el proceso. (AU)


Subject(s)
Humans , Male , Young Adult , Adult , Middle Aged , Semen , Sperm Motility , Spermatozoa , Semen Analysis/methods , Biomechanical Phenomena
5.
Animals (Basel) ; 13(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37238052

ABSTRACT

Artificial insemination in the swine industry, as in other species, demands adequate semen handling and accurate evaluation for the preparation of seminal doses. Sperm concentration and motility estimates are part of the semen evaluation process and are considered important for maximizing the yield of doses for insemination. In this study, methods were examined for their accuracy in the estimation of boar sperm concentration and motility. Assessments of sperm concentration were carried out using iSperm®, ISAS® v1, Open CASA v2, and the Accuread® photometer. Analyses of sperm motility were performed with iSperm®, ISAS® v1, and Open CASA v2 systems. In this study, boar semen samples were collected from 10 healthy males from two genetic lines. There were no relevant differences between sire lines when sperm concentration was assessed. A Bayesian analysis was applied to the four methods used to assess sperm concentration to examine whether there are relevant differences between them. Results suggested differences in the four methods, with a probability of relevance (PR) of 0.86-1.00. The iSperm® method revealed higher concentration values within the highest posterior density region at 95% confidence interval (HPD95%) = 167.0, 224.2 M/mL, whereas Open CASA v2 showed the lowest values, with HPD95% = 99.3, 155.9 M/mL. The iSperm® demonstrated higher reliability in measuring sperm concentration compared to other methods or devices within the given range of confidence. ANOVAs revealed relevant differences in the three methods of motility estimation. Overall, differences in boar sperm concentration and motility estimates were found using various methods, but further studies are needed for better characterization of these differences.

6.
Rev Int Androl ; 21(2): 100350, 2023.
Article in English | MEDLINE | ID: mdl-36933371

ABSTRACT

INTRODUCTION: Human semen analysis must be performed after the liquefaction of the ejaculate. This takes place about 30min after ejaculation and samples must be maintained in the lab during this time. The temperatures for this incubation and the final analysis of motility are crucial but seldom taken into account. This study aims to examine the effect of these temperatures on various sperm parameters both manually (sperm count, motility, morphology, viability, chromatin condensation and maturation and DNA fragmentation) and CASA (kinematics and morphometrics, using an ISAS®v1 CASA-Mot and CASA-Morph systems, respectively) analyzed. METHODS: Seminal samples from thirteen donors were incubated for 10min at 37°C followed by additional 20min at either room temperature (RT, 23°C) or 37°C and then examined following WHO 2010 criteria. RESULTS: The data obtained show that there were no significant differences (P>0.05) in the subjective sperm quality parameters with incubation temperature. On the other hand, the head sperm morphometric parameters were significantly higher after room temperature incubation showing, in addition, lower ellipticity (P<0.05). Furthermore, kinematic parameters were evaluated both at RT and 37°C for the two incubation temperatures. In general, the four temperature combinations showed that kinematic parameters followed this order: RT-RT

Subject(s)
Semen , Sperm Motility , Humans , Male , Temperature , Biomechanical Phenomena , Spermatozoa , Semen Analysis/methods
7.
Syst Biol Reprod Med ; 69(2): 166-174, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36803105

ABSTRACT

The purpose of this study is to investigate the optimal framerate (FR) and the use of different counting chambers for improving CASA-Mot technology use in Andrology. Images were captured at 500 fps, then segmented and analyzed in several ranges of FRs (from 25 to 250) to define the asymptotic point that as an optimal FR. This work was replicated using counting chambers based in capillarity (disposable) or drop displacement (reusable) to study their effects on the motility results and kinematic values of the samples under the different experimental conditions. The α value (asymptote corresponding to FRo) of the exponential curve was 150.23 fps, corresponding to a VCL of 130.58 mm/s, far from the value of 98.89 mm/s corresponding to 50 fps (the highest FR used by most current CASA-Mot systems). Our results have shown that, when using reusable counting chambers, type and depth have influence. In addition, different results were obtained depending on the area of image captured inside the different counting chamber types. To have reliable results in human sperm kinematic studies, almost 150 fps should be used for capturing and analyzing and differences between chambers should be considered by sampling from different areas, to obtain a representative value of the whole sample.


Subject(s)
Semen , Sperm Motility , Humans , Male , Semen Analysis/methods , Spermatozoa , Specimen Handling
8.
Biology (Basel) ; 12(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36829512

ABSTRACT

The presence of sub-fertile or infertile males in farms or artificial insemination (AI) centres has a great impact on the reproductive and economic performance of the livestock industry [...].

9.
Rev. int. androl. (Internet) ; 20(4): 257-265, oct.-dic. 2022. tab
Article in English | IBECS | ID: ibc-210766

ABSTRACT

Introduction: Semen analysis is a clinical method aimed at determining the fertility of a male individual. The traditional subjective method lacks the reliability that can be achieved by computer-assisted sperm analysis (CASA) technology. Unfortunately, this technology has only been used when taking into consideration individually different sperm characteristics. The aim of this work is to present an integrative mathematical approach that considers different seminal variables to establish human sperm subpopulations. Methods: Samples were obtained from thirteen volunteers via masturbation and were analyzed by the routine subjective method and two objective systems, CASA Motility (CASA-Mot) and CASA Morphology (CASA-Morph). Results: Seminogram variables were reduced to three principal components (PC) showing two subpopulations. Kinematics and morphometric variables each rendered three PCs for four subpopulations. Conclusions: These results lay the foundations for future studies including different geographical, social, ethnic and age range conditions with the aim of achieving a definitive view of the human semen picture. (AU)


Introducción: El análisis de semen es el método clínico para determinar la fertilidad masculina. El método subjetivo tradicional carece de la fiabilidad, que se puede obtener con el uso de la tecnología del análisis de semen asistido por ordenador (CASA). Desafortunadamente, esta tecnología se ha venido utilizando únicamente teniendo en cuenta de forma independiente las diversas características de los espermatozoides. El objetivo del presente estudio es presentar una aproximación matemática que incluye diversas variables seminales para definir las posibles subpoblaciones espermáticas. Métodos: Las muestras se obtuvieron por masturbación de 13 voluntarios, que se analizaron de forma subjetiva, así como con 2 sistemas objetivos, para el análisis de la movilidad (CASA-Mot) y la morfología (CASA-Morph). Resultados: Tanto las variables cinemáticas como las morfométricas rindieron 3 componentes principales y 4 subpoblaciones. Conclusión: Estos resultados sientan las bases para estudios futuros que incluyan diferencias geográficas, sociales, étnicas o de rango de edad con el ánimo de obtener una definición concluyente sobre las características seminales de la especie humana. (AU)


Subject(s)
Humans , Adult , Middle Aged , Semen , Semen Analysis/methods , Masturbation , Reproducibility of Results , Spermatozoa/classification , Kinetics
10.
Rev Int Androl ; 20(4): 257-265, 2022.
Article in English | MEDLINE | ID: mdl-35915010

ABSTRACT

INTRODUCTION: Semen analysis is a clinical method aimed at determining the fertility of a male individual. The traditional subjective method lacks the reliability that can be achieved by computer-assisted sperm analysis (CASA) technology. Unfortunately, this technology has only been used when taking into consideration individually different sperm characteristics. The aim of this work is to present an integrative mathematical approach that considers different seminal variables to establish human sperm subpopulations. METHODS: Samples were obtained from thirteen volunteers via masturbation and were analyzed by the routine subjective method and two objective systems, CASA Motility (CASA-Mot) and CASA Morphology (CASA-Morph). RESULTS: Seminogram variables were reduced to three principal components (PC) showing two subpopulations. Kinematics and morphometric variables each rendered three PCs for four subpopulations. CONCLUSIONS: These results lay the foundations for future studies including different geographical, social, ethnic and age range conditions with the aim of achieving a definitive view of the human semen picture.


Subject(s)
Semen Analysis , Semen , Biomechanical Phenomena , Humans , Male , Reproducibility of Results , Semen Analysis/methods , Spermatozoa
11.
Biology (Basel) ; 10(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203288

ABSTRACT

The aim was to determine the relationship between kinematic parameters of boar spermatozoa and fertility rates of sow, as well as to assess the effect of sperm clusters on the fertility capacity of the ejaculate. Semen samples were collected from 11 sexually mature boars. Samples were analyzed by an ISAS®v1 CASA-Mot system for eight kinematic parameters. Ejaculate clusters were characterized using multivariate procedures, such as principal factors (PFs) analysis and clustering methods (the k-means model). Four different ejaculate clusters were identified from two kinematic PFs which involved linear trajectory and velocity. There were differences (p < 0.05) between the sperm kinematic variables by sire line. There was no statistical difference (p > 0.05) between dam lines and ejaculate clusters in fertility variables. The discriminant ability of the different kinematics of sperm variables to predict litter size fertility was analyzed using receiver operating characteristics (ROC) curve analysis. Curvilinear velocity (VCL), average path velocity (VAP), amplitude of lateral head displacement (ALH), and beat-cross frequency (BCF) showed significant, albeit limited, predictive capacity for litter size fertility variables (range: 0.55-0.58 area under curve, AUC). The kinematic analysis of the ejaculates in clusters did not have a predictive capacity for litter size variables.

12.
Vet Sci ; 8(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066550

ABSTRACT

The evaluation of the male fertility potential is based on the analysis of the basic spermatic characteristics of concentration, motility and morphology. Thus, the study of sperm morphology is a fundamental element in the seminal analysis, but its real meaning has been biased by the techniques used for its evaluation. These techniques involve dehydration phases and subsequent staining, which involves the production of artifacts. The aim of the study is to compare two methods for equid semen morphology evaluation, Trumorph® using living sperm vs. eosin-nigrosine stain. A total of 49 ejaculates from stallions and donkeys were used. After semen collection and dilution, an aliquot was placed on the slide and introduced in the Trumorph® device. Then observation was made with a 40x objective and negative phase-contrast microscope. Another aliquot was stained using eosin-nigrosine stain and viewed using 100× magnification. Well-formed sperm were observed, and different abnormalities were identified using Trumorph®. The use of eosin-nigrosin staining method and Trumorph® led to the same results and both techniques can be used for stallion and donkey sperm morphological analysis. However, considering the fact that Trumorph® uses living sperm helps prevent sperm cell alteration during sample preparation. Therefore, Trumorph® can be a good alternative to the conventional staining method, which provides a quick test on live sperm.

13.
Front Vet Sci ; 8: 651477, 2021.
Article in English | MEDLINE | ID: mdl-34113670

ABSTRACT

This study aimed to characterize the sperm kinematic values with high frames per second, to define the subpopulation structure of a horse and a donkey and compare them. A total of 57 fresh semen ejaculates (26 Spanish and 16 Arabian horse breeds and 10 donkeys) were collected and subsequently analyzed for kinematic parameters using the Computer-aided sperm motility analysis ISAS®v1.2 system and using a Spermtrack® 10-µm depth counting chamber. Sequences were recorded at 250 frames per second, and eight kinematic parameters were automatically evaluated. All kinematic parameters showed significant differences between a donkey and a horse and between horse breeds. All ejaculates evaluated showed excellent semen motility characteristics, with significantly higher values for all kinematic parameters for donkeys compared with horses except for beat-cross frequency. Donkey sperm was faster and linear than the horse. Regarding horse breeds differences, the Spanish horse had higher average path velocity, curvilinear velocity, and beat-cross frequency compared with the Arabian horse. Spanish horse sperm was rapid, but Arab horse was more linear. The principal component analysis showed three sperm subpopulations in the ejaculate of donkeys and horses with a significantly different motility characteristic between them. The dominant subpopulation for both donkey and horse was for rapid, straight, and linear with a high beat sperm (38.2 and 41.7%, respectively), whereas the lowest subpopulation was for the slowest and non-linear sperms. This, plus slight differences in the distribution of these subpopulations between Arabian and Spanish horses, were found. In conclusion, higher frames permitted to have a new interpretation of motile subpopulations with species and breed differences. More so, future works on donkey and horse breed spermatozoa should take into account differences between breeds that may interfere and alter the real analysis performed.

14.
Animals (Basel) ; 11(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805060

ABSTRACT

The aim of the study was to compare the morphometric features of sperm head size and shape from the Pietrain line and the Duroc × Pietrain boar crossbred terminal lines, and to evaluate their relationship with reproductive success after artificial insemination of sows produced from crossbreeding the York, Landrace and Pietrain breeds. Semen samples were collected from 11 sexually mature boars. Only ejaculates with greater than 70% motility rate and <15% of abnormal sperm were used for artificial inseminations (AI) and included in the study. Samples were analyzed using an ISAS®v1 computer-assisted sperm analysis system for eight morphometric parameters of head shape and size (CASA-Morph). Sub-populations of morphometric ejaculates were characterized using multivariate procedures, such as principal component (PC) analysis and clustering methods (k-means model). Four different ejaculate sub-populations were identified from two PCs that involved the head shape and size of the spermatozoa. The discriminant ability of the different morphometric sperm variables to predict sow litter size was analyzed using a receiver operating characteristics (ROC) curve analysis. Sperm head length, ellipticity, elongation, and regularity showed significant predictive capacity on litter size (0.59, 0.59, 0.60, and 0.56 area under curve (AUC), respectively). The morphometric sperm sub-populations were not related to sow litter size.

15.
Reprod Domest Anim ; 56(7): 1024-1033, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33914994

ABSTRACT

The semen movement and sperm head size patterns of boar ejaculates were analysed using computer-assisted semen analysis (CASA)-Mot and -Morph systems. The aim of the present study was to compare morphometric and kinematics variables from boars and to determine the relationship with sow fertility variables related to litter size. The females were from maternal crossing schemes such as the continuous 3-generation cross between York (Y), Landrace (L), and Pietrain (P) hybrid sows and Pietrain boars. Semen samples were collected from 11 sexually mature boars from two sire lines. Samples were analysed using the ISAS® v1 system to evaluate eight kinematic variables of sperm velocity, progressiveness and undulations. Four morphometric parameters of sperm head size (length, width, area and perimeter) were analysed. Bayesian analysis revealed relevant differences in four kinematic variables (VSL, LIN, STR and WOB) between sire lines, with a probability of relevance (PR ) of 0.79-0.91, and Pietrain boars were associated with higher progressive motility compared with Duroc x Pietrain boars. Moreover, there were relevant differences in all morphometric variables (PR  = 0.82-0.85) between sire lines. The dam line Y-L-50 (½ Y × ½ L) had higher total born per litter and piglets born alive, and YLP-75 (1 /8 Y × 1 /8 L × 3 /4 P) was associated with higher values of litter weight at birth (highest posterior density region at 95% = 9.92, 16.41 kg). There are relevant differences in kinematic variables between the assessed sire lines and the differences in morphometric and litter size variables were also relevant. The York-Landrace hybrid sows had higher total born per litter and piglets born alive, and there were relevant differences when compared with YLP-50 (» York × » Landrace × ½ Pietrain). Differences in kinematic and morphometric variables between sire and dam lines related to fertility need to be further studied.


Subject(s)
Litter Size/physiology , Sperm Motility , Spermatozoa/physiology , Sus scrofa , Animals , Breeding , Female , Fertility/genetics , Fertility/physiology , Insemination, Artificial/veterinary , Litter Size/genetics , Male , Semen Analysis/veterinary , Sperm Head , Spermatozoa/cytology
16.
PLoS One ; 16(3): e0248270, 2021.
Article in English | MEDLINE | ID: mdl-33690716

ABSTRACT

There has been very limited use of computer assisted semen analysis (CASA) to evaluate reptile sperm. The aim of this study was to examine sperm kinematic variables in American crocodile (Crocodylus acutus) semen samples and to assess whether sperm subpopulations could be characterized. Eight ejaculates (two ejaculates/male) from four sexually mature captive crocodiles were obtained. An ISAS®v1 CASA-Mot system, with an image acquisition rate of 50 Hz, and ISAS®D4C20 counting chambers were used for sperm analyses. The percentages of motile and progressively motile spermatozoa did not differ among animals (P > 0.05) but there was a significant animal effect with regards to kinematic variables (P < 0.05). Principal component (PC) analysis revealed that kinematic variables grouped into three components: PC1, related to velocity; PC2 to progressiveness and PC3 to oscillation. Subpopulation structure analysis identified four groups (P < 0.05), which represented, on average, 9.8%, 32.1%, 26.8%, and 31.3% of the total sperm population. Males differed in the proportion of sperm in each of the kinematic subpopulations. This new approach for the analysis of reptile sperm kinematic subpopulations, reflecting quantifiable parameters generated by CASA system technology, opens up possibilities for future assessments of crocodile sperm and will be useful in the future development of assisted reproduction for these species.


Subject(s)
Alligators and Crocodiles/genetics , Cell Lineage/genetics , Reproduction/genetics , Spermatozoa/cytology , Animals , Biomechanical Phenomena , Male , Semen/cytology , Semen/physiology , Semen Analysis , Semen Preservation , Sperm Motility/genetics , Spermatozoa/physiology , United States
17.
Anim Reprod Sci ; 223: 106643, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33157363

ABSTRACT

This study was conducted to determine optimum image capture frame rates (FRO) when there was evaluation of different types of counting chambers used for CASA-Mot determinations of stallion sperm motility. Sperm VCL was determined at frame rates of 25-250 f/s in: 1) Spermtrack® (Spk) 10 and 20 chambers (drop displacement-type chambers 10 and 20 µm-deep respectively; and 2) ISAS®D4C10, ISAS®D4C20 (10 and 20 µm-deep respectively) and ISAS®D4C20 L (20 µm-deep) capillary loaded chambers. Values for different sperm kinematic variables were determined using each chamber at 250 f/s, which is the maximum frame rate that the software can be used for analyses. With evaluation of Spk chambers, there was a greater curvilinear velocity (VCL), average path velocity (VAP), straight line velocity (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) values (P < 0.05) than with capillary loaded chambers, with there being greatest values with 20 µm-deep chambers. With the Spk10 chamber, VCL and ALH were greater at the chamber centre than periphery. There were no such differences for the Spk20 chamber. With evaluation of the D4C10 chamber, VSL and STR were less when there was a sperm deposition point towards the chamber end, while there were the opposite for the D4C20 chamber. When there was evaluation of the D4C20 chamber, there were also greater VCL, WOB and BCF values in distal areas. With use of most of these chambers, data should be collected from different fields and means determined, however, this is not necessary with Spk20 chambers.


Subject(s)
Horses/physiology , Image Processing, Computer-Assisted/instrumentation , Semen Analysis/veterinary , Sperm Motility/physiology , Animals , Biomechanical Phenomena , Male , Software , Sperm Count/veterinary
18.
Animals (Basel) ; 10(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138237

ABSTRACT

In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber (DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were evaluated using each chamber and a high-resolution camera capable of capturing a maximum of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear velocity-VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed along the CLC. However, all the kinematic variables had a higher value in a highly concentrated sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for donkey computerised sperm motility analysis.

19.
Biology (Basel) ; 9(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604716

ABSTRACT

The ejaculate is heterogenous and sperm sub-populations with different kinematic patterns can be identified in various species. Nevertheless, although these sub-populations are statistically well defined, the statistical differences are not always relevant. The aim of the present study was to characterize kinematic sub-populations in sperm from two bovine species, and diluted with different commercial extenders, and to determine the statistical relevance of sub-populations through Bayesian analysis. Semen from 10 bulls was evaluated after thawing. An ISAS®v1 computer-assisted sperm analysis (CASA)-Mot system was employed with an image acquisition rate of 50 Hz and ISAS®D4C20 counting chambers. Sub-populations of motile spermatozoa were characterized using multivariate procedures such as principal components (PCs) analysis and clustering methods (k-means model). Four different sperm sub-populations were identified from three PCs that involved progressiveness, velocity, and cell undulatory movement. The proportions of the different sperm sub-populations varied with the extender used and in the two species. Despite a statistical difference (p < 0.05) between extenders, the Bayesian analysis confirmed that only one of them (Triladyl®) presented relevant differences in kinematic patterns when compared with Tris-EY and OptiXcell®. Extenders differed in the proportion of sperm cells in each of the kinematic sub-populations. Similar patterns were identified in Bos taurus and Bos indicus. Bayesian results indicate that sub-populations SP1, SP2, and SP3 were different for PC criteria and these differences were relevant. For velocity, linearity, and progressiveness, the SP4 did not show a relevant difference regarding the other sperm sub-populations. The classical approach of clustering or sperm subpopulation thus may not have a direct biological meaning. Therefore, the biological relevance of sperm sub-populations needs to be reevaluated.

20.
Asian J Androl ; 22(6): 578-582, 2020.
Article in English | MEDLINE | ID: mdl-32341212

ABSTRACT

To date, sperm morphometric studies have assessed whole sperm populations without considering sperm function. The aim of this study was to evaluate the relationship of sperm membrane and acrosomal integrity with sperm morphometry in liquid semen samples collected from bulls. To this end, sperm morphometry was performed on cryopreserved semen samples from 16 bulls by a combination of fluorescent dyes, including Hoechst 33343, carboxyfluorescein diacetate, and propidium iodide. This allowed discrimination of different subpopulations on the basis of sperm membrane and acrosomal integrity and analysis of the morphometrics of the sperm head, nucleus, and acrosome using a specific plug-in module created on ImageJ. Acrosomal integrity was related to sperm morphometry as the heads of spermatozoa with a damaged acrosome were significantly smaller than those with a normal acrosome (P < 0.001). In the case of spermatozoa with an intact acrosome, those with a damaged plasma membrane had a larger sperm head and acrosome than spermatozoa with an intact plasma membrane (P < 0.001). No significant differences in the sperm head size were observed between sperm subpopulations without an acrosome or in the nuclear sperm morphometry of the different subpopulations. There was a positive correlation between the sperm motility values of the samples and the morphometric parameters for intact spermatozoa. These correlations were particularly strong for the morphometric parameters of the sperm acrosome. We conclude that there are clear differences in the sperm morphometry depending on the status of the sperm membrane and acrosome and this should be considered when performing this kind of analysis.


Subject(s)
Acrosome/physiology , Cell Membrane/ultrastructure , Spermatozoa/ultrastructure , Acrosome/ultrastructure , Animals , Cattle , Cell Membrane/physiology , Male , Microscopy, Fluorescence , Sperm Head/ultrastructure , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL
...