Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 86(1): 21-42, 2022.
Article in English | MEDLINE | ID: mdl-35034899

ABSTRACT

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.


Subject(s)
COVID-19 , Pandemics , Aged , Brain/diagnostic imaging , Brain Mapping , Delivery of Health Care , Humans , Male , Quality of Life
2.
Neuroimage ; 37(4): 1384-95, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17689986

ABSTRACT

In order to study the temporal activation course of visual areas V1 and V5 in response to a motion stimulus, a random dots kinematogram paradigm was applied to eight subjects while magnetic fields were recorded using magnetoencephalography (MEG). Sources generating the registered magnetic fields were localized with Magnetic Field Tomography (MFT). Anatomical identification of cytoarchitectonically defined areas V1/V2 and V5 was achieved by means of probabilistic cytoarchitectonic maps. We found that the areas V1/V2 and V5+ (V5 and other adjacent motion sensitive areas) exhibited two main activations peaks at 100-130 ms and at 140-200 ms after motion onset. The first peak found for V1/V2, which corresponds to the visual evoked field (VEF) M1, always preceded the peak found in V5+. Additionally, the V5+ peak was correlated significantly and positively with the second V1/V2 peak. This result supports the idea that the M1 component is generated not only by the visual area V1/V2 (as it is usually proposed), but also by V5+. It reflects a forward connection between both structures, and a feedback projection to V1/V2, which provokes a second activation in V1/V2 around 200 ms. This second V1/V2 activation (corresponding to motion VEF M2) appeared earlier than the second V5+ activation but both peaked simultaneously. This result supports the hypothesis that both areas also generate the M2 component, which reflects a feedback input from V5+ to V1/V2 and a crosstalk between both structures. Our study indicates that during visual motion analysis, V1/V2 and V5+ are activated repeatedly through forward and feedback connections and both contribute to m-VEFs M1 and M2.


Subject(s)
Motion Perception/physiology , Visual Cortex/physiology , Adult , Aged , Algorithms , Brain Mapping , Cadaver , Evoked Potentials, Visual/physiology , Humans , Image Processing, Computer-Assisted , Magnetoencephalography , Male , Middle Aged , Models, Statistical , Normal Distribution , Photic Stimulation , Visual Cortex/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...