Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 172: 111349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310673

ABSTRACT

PURPOSE: Radiomics analysis of oncologic positron emission tomography (PET) images is an area of significant activity and potential. The reproducibility of radiomics features is an important consideration for routine clinical use. This preliminary study investigates the robustness of radiomics features in PSMA-PET images across penalized-likelihood (Q.Clear) and standard ordered subset expectation maximization (OSEM) reconstruction algorithms and their setting parameters in phantom and prostate cancer (PCa) patients. METHOD: A NEMA image quality (IQ) phantom and 8 PCa patients were selected for phantom and patient analyses, respectively. PET images were reconstructed using Q.Clear (reconstruction ß-value: 100-700, at intervals of 100 for both NEMA IQ phantom and patients) and OSEM (duration: 15sec, 30sec, 1 min, 2 min, 3 min, 4 min and 5 min for NEMA phantom and duration: 30 s, 1 min and 2 min for patients) reconstruction methods. Subsequently, 129 radiomic features were extracted from the reconstructed images. The coefficient of variation (COV) of each feature across reconstruction methods and their parameters was calculated to determine feature robustness. RESULTS: The extracted radiomics features showed a different range of variability, depending on the reconstruction algorithms and setting parameters. Specifically, 23.0 % and 53.5 % of features were found as robust against ß-value variations in Q.Clear and different durations in OSEM reconstruction algorithms, respectively. Taking into account the two algorithms and their parameters, eleven features (8.5 %) showed COV ≤ 5 % and eighteen (14 %) showed 5 % 20 %. The mean COVs of the extracted radiomics features were significantly different between the two reconstruction methods (p < 0.05) except for the phantom morphological features. CONCLUSIONS: All radiomics features were affected by reconstruction methods and parameters, but features with small or very small variations are considered better candidates for reproducible quantification of either tumor or metastatic tissues in clinical trials. There is a need for standardization before the implementation of PET radiomics in clinical practice.


Subject(s)
Image Processing, Computer-Assisted , Radiomics , Male , Humans , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Algorithms , Phantoms, Imaging , Positron Emission Tomography Computed Tomography
2.
Abdom Radiol (NY) ; 48(11): 3297-3309, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37453942

ABSTRACT

PURPOSE: Utilizing [18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography/Computed Tomography ([18F]FDG PET/CT) scans on primary colon cancer (CC) patients including with liver metastases (LM), we aimed to determine the relationship between structural CT radiomic features and metabolic PET standard uptake value (SUV) in these patients. MATERIAL AND METHOD: A retrospective analysis was performed on 60 patients with primary CC, of which 40 had liver metastases that were more than 2 cm in diameter. [18F]FDG PET/CT was used to calculate SUVmax, and 42 CT radiomic characteristics were extracted from non-enhanced CT images. Tumors were manually segmented on fused PET/CT scans by two experienced nuclear medicine physicians. Sixty primary CC and forty LM lesions were segmented accordingly. In the cases of multiple LM lesions, the lesion with the largest diameter was chosen for segmentation. In a univariate analysis approach, we used Spearman correlation with multiple testing correction (Benjamini-Hutchberg false discovery rate (FDR), α = 0.05) to ascertain the relationship between SUVmax and CT radiomic features. RESULT: Twenty-two (52.3%) and twenty-six (61.9%) CT radiomic features were found to be significantly correlated with SUVmax values of primary CC (n = 60) and LM (n = 40) lesions, respectively (FDR-corrected p value < 0.05 and 0.6 < |ρ| < 1). GLCM_homogeneity (ρ = 0.839), GLCM_dissimilarity (ρ = - 0.832), GLZLM_ZLNU (ρ = 0.827), and GLCM_contrast (ρ = - 0.815) were the 4 features most correlated with SUVmax in CC. On the other hand, in LM, the 4 features most correlated with SUVmax were GLRLM_LRHGE (ρ = 0.859), GLRLM_LRE (ρ = 0.859), GLRLM_LRLGE (ρ = 0.857), and GLRLM_RP (ρ = - 0.820). CONCLUSION: We investigated the relationship between SUVmax of preoperative primary CC lesions and their LM with CT radiomic features. We found some CT radiomic features having relationships with the metabolic characteristics of lesions. This work suggests that non-invasive predictive imaging biomarkers for precision medicine can be derived from CT radiomic.

3.
J Med Imaging Radiat Sci ; 53(4): 664-671, 2022 12.
Article in English | MEDLINE | ID: mdl-36266173

ABSTRACT

INTRODUCTION: Radiomics in Ultrasound (US) imaging has been investigated for the prediction and prognosis of cancers. However, inter-scanner and intra-scanner variations may affect the reproducibility of radiomics results. This study aims to evaluate the reproducibility of US textural radiomics features across various scan settings and scanner vendors. MATERIALS AND METHODS: US images in quality control (QC) phantom were obtained by three scanners (Philips, Samsung, and Siemens) with different scan settings and parameters. Circular regions of interest (ROIs) inside isoechoic, hypoechoic, and hyperechoic objects were manually delineated. Forty textural radiomics features were extracted from each ROI, and then the robust features that could distinguish different echogenic objects were obtained by the Mann-Whitney U test. Reproducibility of the robust radiomics features was assessed by the intraclass correlation coefficient (ICC) and coefficient of variation (CV); ICC>0.90 and %CV<20 were considered reproducible. RESULTS: According to the Mann-Whitney U test results, ten robust features could differentiate the hypoechoic, and 15 robust features could differentiate the hyperechoic objects from the isoechoic objects (P<0.001). The total ICC of the robust features for each echogenic object was >0.95 in different scanners and scan settings. Four and seven features were individually reproducible (%CV < 20, ICC>0.90) in hypoechoic and hyperechoic objects, respectively. Also, four features seem reproducible by changing the ROI location across the horizontal and vertical lines for both convex and linear array transducers. CONCLUSIONS: Most of the US textural radiomics features in this study were not reproducible. However, several features showed high reproducibility at different scan settings and scanners. These features may also be reproducible when ROI size and location change slightly.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Phantoms, Imaging , Ultrasonography , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...