Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 239: 124082, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965566

ABSTRACT

This study concerns a scoping and literature review of nanocarbon and its composites with details on specific propositions, including nanocarbon history, nanocarbon types, and lignocellulose nanocarbon types, properties, applications, toxicity, regulation, and business model for commercialization. The review brings novelties, comprehensively expounding on laboratory studies and industrial applications of biomass or lignocellulose materials-derived nanocarbon and its composites. Since its first discovery in the form of Buckyball in 1985, nanocarbon has brought interest to scientists and industries for applications. From the previous studies, it is discovered that many types of nanocarbon are sourced from lignocellulose materials. With their excellent properties of nanomaterials, nanocarbon has been harnessed for such as reinforcing and filler agents for nanocomposites or direct use of individual nanocarbon for specific purposes. However, the toxicological properties of nanocarbon have delivered a level of concern in its use and application. In addition, with the radically growing increase in the use of nanocarbon, policies have been enacted in several countries that rule on the use of nanocarbon. The business model for the commercialization of lignocellulose-based nanocarbon was also proposed in this study. This study can showcase the importance of both individual nanocarbon and nanocarbon-based composites for industrial implementations by considering their synthesis, properties, application, country legislations/regulations, and business model. The studies also can be the major references for researchers to partner with industries and governments in investing in lignocellulose-sourced nanocarbon potential research, development, and policies.


Subject(s)
Lignin , Nanocomposites
2.
Environ Res ; 212(Pt D): 113235, 2022 09.
Article in English | MEDLINE | ID: mdl-35500851

ABSTRACT

Indonesia has committed to restoring degraded peatlands by revegetating them with paddy plants using paludiculture systems. Nanofertilizers derived from chitosan and oil palm biomass can be used to enhance paddy growth. This study analyzed the potential growth media of chitosan nanocomposite films for paddy seeds grown in tropical peatland. Chitosan nanocomposites were synthesized by reinforcing chitosan with activated carbon nanoparticles (ACNPs), nonactivated carbon nanoparticles (n-ACNPs), and lignocellulose nanofibers (LCNFs). All carbon nanoparticles were reversibly aggregated, whereas LCNFs did not have a tendency to aggregate but were entangled. The highest specific surface area and pore volume are on EFB ACNPs, followed by OPT LCNFs and EFB n-ACNPs. Both nanocomposites' tensile strength and elastic modulus value were reduced with an average of 45.77% and 34.00%, respectively, because of the lack of nano- and micro-aggregates formation, good dispersion, and incompatibility. In a germination test, chitosan nanocomposites provided the best growth patterns for the Dendang paddy variety, whereas, in a greenhouse test, the nanocomposites had the best growth patterns for the Indragiri paddy variety. Chitosan/empty fruit bunch ACNP nanocomposites grown in a germinator had the highest growth normality (100.00%), highest maximum growth potential (100.00%), and highest height average (11.27 cm). In the greenhouse test, chitosan/oil palm trunk n-ACNPs achieved the highest growth natality (16.44%) and growth rate (65.74%). All chitosan nanocomposites had a synergetic biofertilizing effect on fungi and mycorrhiza. Chitosan nanocomposites can be used as a growth regulator for peatland paddy varieties and can accelerate peatland restoration in tropical areas.


Subject(s)
Chitosan , Nanocomposites , Nanofibers , Nanoparticles , Lignin , Seeds
3.
Water Sci Technol ; 83(11): 2652-2668, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34115620

ABSTRACT

In this study, we examined activated and non-activated carbon nanoparticles (CNPs) derived from oil palm empty fruit bunch (OPEFB) fibers for their nanomaterial characteristics and their potential effectiveness in heavy metal removal. To investigate these properties, transmission electron microscopy, scanning electron microscopy (SEM), EDX, Fourier transform infrared spectroscopy, particle size analysis, X-ray diffraction, and atomic absorption spectrophotometry were employed. This study shows that both the activated and the non-activated CNPs were in the form of well-dispersed and aggregated particles. As analyzed using SEM, the external surfaces of the non-activated CNPs were determined to be irregular, while those of the activated CNPs had a more circular shape without aggregation. Carbon was the most dominant element observed in these CNPs, and the occurrence of its activation process altered the chemical functional groups of the non-activated CNPs by shifting their wavenumbers and intensities. Additionally, the activation process increased the crystallinity domain in the activated CNPs. OPEFB fibers could be valorized to obtain both activated and non-activated CNPs that had the potential efficiency to remove heavy metals, including copper (Cu), lead (Pb), iron (Fe), and zinc (Zn) at certain times. Based on the analysis of the Langmuir and Freundlich models, the activated and non-activated CNPs were found to have shown favorable adsorption to Cu, Pb, and Fe, with a percentage of heavy metal removal of over 84%. The adsorption of heavy metals was carried out via a chemical process.


Subject(s)
Metals, Heavy , Nanoparticles , Water Pollutants, Chemical , Adsorption , Charcoal , Fruit , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...