Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 45: 101961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631259

ABSTRACT

Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.

2.
Drug Dev Res ; 85(2): e22156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355931

ABSTRACT

Four piroxicam metal complexes; NiL2 , PtL2 , PdL2 , and AgL were synthesized and characterized by different techniques with enhanced antibacterial and anticancer activity. Regarding in vitro antimicrobial activity, complex NiL2 displayed potent antibacterial effect against Escherichia coli and Pseudomonas aeruginosa that was 1.9-folds higher than piroxicam (minimum inhibitory concentration [MIC] = 31.85, 65.32 µM), respectively. In case of G+ve bacteria, complex PtL2 had potent activity on Staphylococcus aureus which was 2.1-folds higher than piroxicam (MIC = 43.12 µM), while activity of complex AgL against Enterococcus faecalis was threefolds higher than piroxicam (MIC = 74.57 µM. Complexes PtL2 and PdL2 exhibited higher inhibition of DNA gyrase than piroxicam (IC50 = 6.21 µM) in the range of 1.9-1.7-folds. The in vitro antiproliferative activity depicted that all investigated complexes showed better cytotoxic effect than piroxicam, specifically Pt and Pd complexes which had lower IC50 values than piroxicam on human liver cancer cell line HepG2 by 1.8 and 1.7-folds, respectively. While Pd and Ag complexes showed 2 and 1.6-folds better effect on human colon cancer cell line HT-29 compared with piroxicam. Molecular modeling studies including docking on Stranded DNA Duplex (1juu) and DNA gyrase enzyme (1kzn) that gave good insight about interaction of complexes with target molecules, calculation of electrostatic potential map and global reactivity descriptors were performed.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Piroxicam/pharmacology , Coordination Complexes/pharmacology , DNA Gyrase , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation
3.
Drug Deliv Transl Res ; 14(2): 491-509, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37612575

ABSTRACT

Despite the fact that chemoimmunotherapy has emerged as a key component in the era of cancer immunotherapy, it is challenged by the complex tumor microenvironment (TME) that is jam-packed with cellular and non-cellular immunosuppressive components. The aim of this study was to design a nanoparticulate system capable of sufficiently accumulating in the tumor and spleen to mediate local and systemic immune responses, respectively. The study also aimed to remodel the immunosuppressive TME. For such reasons, multi-functional polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) were engineered to simultaneously eradicate the cancer cells, silence the tumor-associated fibroblasts (TAFs), and re-educate the tumor-associated macrophages (TAMs) using doxorubicin, losartan, and metformin, respectively. These agents were also selected for their ability to tip the balance of the splenic immune cells towards immunostimulatory phenotypes. To establish TAM and TAF cultures, normal macrophages and fibroblasts were incubated with B16F10 melanoma cell (Mel)-derived secretome. Drug-loaded PLGA NPs were prepared, characterized, and tested in the target cell types. Organ distribution of fluorescein-loaded PLGA NPs was evaluated in a mouse model of melanoma. Finally, the local and systemic effects of different combination therapy programs were portrayed. The in vitro studies showed that the drug-loaded PLGA NPs could significantly ablate the immunosuppressive nature of Mel and skew TAMs and TAFs towards more favorable phenotypes. While in vivo, PLGA NPs were proven to exhibit long blood circulation time and to localize preferentially in the tumor and the spleen. The combination of either metformin or losartan with doxorubicin was superior to the monotherapy, both locally and systemically. However, the three-agent combo produced detrimental effects in the form of compromised well-being, immune depletion, and metastasis. These findings indicate the potential of TME remodeling as means to prime the tumors for successful chemoimmunotherapy. In addition, they shed light on the importance of the careful use of combination therapies and the necessity of employing dose-reduction strategies. D-NPs doxorubicin-loaded NPs, M-NPs metformin-loaded NPs, L-NPs losartan-loaded NPs, TAMs tumor-associated macrophages, TAFs tumor-associated fibroblasts, PD-L1 programmed death ligand 1, TNF-α tumor necrosis factor alpha, TGF-ß transforming growth factor beta, CD206/40/86 cluster of differentiation 206/40/86, α-SMA alpha-smooth muscle actin, MMPs matrix metalloproteases.


Subject(s)
Melanoma , Metformin , Nanoparticles , Animals , Mice , Polylactic Acid-Polyglycolic Acid Copolymer , Glycols/pharmacology , Tumor Microenvironment , Losartan , Doxorubicin/therapeutic use , Doxorubicin/pharmacology , Metformin/pharmacology , Cell Line, Tumor
4.
Bioorg Chem ; 142: 106916, 2024 01.
Article in English | MEDLINE | ID: mdl-37913584

ABSTRACT

Development of Multitarget-Directed Ligands (MTDLs) is a promising approach to combat the complex etiologies of Alzheimer's disease (AD). Herein we report the design, synthesis, and characterization of a new series of 1,4-bisbenzylpiperazine-2-carboxylic acid derivatives 3-5(a-g), 7a-f, 8a-s, and their piperazine-2-yl-1,3,4-oxadiazole analogs 6a-g. In vitro inhibitory effect against Electrophorus electricus acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from Equine serum was evaluated using modified Ellman's method, considering donepezil and tacrine as reference drugs. Lineweaver-Burk plot analysis of the results proved competitive inhibition of AChE and BChE with Ki values, in low micromolar range. The free carboxylic acid series 4a-g showed enhanced selectivity for AChE. Hence, 4c, 1,4-bis (4-chlorobenzyl)-piperazinyl-2-carboxylic acid), was the most active member of this series (Ki (AChE) = 10.18 ± 1.00 µM) with clear selectivity for AChE (SI âˆ¼ 17.90). However, the hydroxamic acids 7a-f and carboxamides 8a-s congeners were more potent and selective inhibitors of BChE (SI âˆ¼ 5.38 - 21862.5). Extraordinarily, 1,4-bis (2-chlorobenzyl)-piperazinyl-2-hydroxamic acid 7b showed promising inhibitory activity against BChE enzyme (Ki = 1.6 ± 0.08 nM, SI = 21862.5), that was significantly superior to that elicited by donepezil (Ki = 12.5 ± 2.6 µM) and tacrine (Ki = 17.3 ± 2.3 nM). Cytotoxicity assessment of 4c and 7b, on human neuroblastoma (SH-SY5Y) cell lines, revealed lower toxicity than staurosporine and was nearly comparable to that of donepezil. Molecular docking and molecular dynamics simulation afforded unblemished insights into the structure-activity relationships for AChE and BChE inhibition. The results showed stable binding with fair H-bonding, hydrophobic and/or ionic interactions to the catalytic and peripheral anionic sites of the enzymes. In silico predicted ADME and physicochemical properties of conjugates showed good CNS bioavailability and safety parameters. In this regard, compound (7b) might be considered as a promising inhibitor of BChE with an innovative donepezil-based anti-Alzheimer activity. Further assessments of the most potent AChE and BChE inhibitors as potential MTDLs anti-Alzheimer's agents are under investigation with our research group and will be published later.


Subject(s)
Alzheimer Disease , Neuroblastoma , Animals , Horses , Humans , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Donepezil/pharmacology , Acetylcholinesterase/metabolism , Tacrine/pharmacology , Molecular Docking Simulation , Piperazines/pharmacology , Carboxylic Acids , Structure-Activity Relationship , Alzheimer Disease/drug therapy , Molecular Dynamics Simulation , Molecular Structure
5.
Photodiagnosis Photodyn Ther ; 44: 103792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689125

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS: Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION: This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.


Subject(s)
Melanoma , Phoeniceae , Photochemotherapy , Humans , Melanoma/drug therapy , Melanoma/pathology , Tumor-Associated Macrophages/pathology , Phoeniceae/chemistry , B7-H1 Antigen/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Tumor Microenvironment
6.
Biomed Mater ; 18(1)2022 12 16.
Article in English | MEDLINE | ID: mdl-36541457

ABSTRACT

Metabolic reprogramming 'Warburg effect' and immune checkpoint signaling are immunosuppressive hallmarks of triple-negative breast cancer (TNBC) contributing to the limited clinical applicability of immunotherapy. Biomaterials arise as novel tools for immunomodulation of the tumor microenvironment that can be used alongside conventional immunotherapeutics. Chitosan and lecithin are examples of versatile biomaterials with interesting immunomodulatory properties. In this study, we aimed at investigation of the role of carefully designed hybrid nanoparticles (NPs) on common mediators of both programmed death ligand 1 (PD-L1) expression and glycolytic metabolism. Hybrid lecithin-chitosan NPs were prepared and characterized. Their intracellular concentration, localization and effect on the viability of MDA-MB-231 cells were assessed. Glycolytic metabolism was quantified by measuring glucose consumption, adenosine triphosphate (ATP) generation, lactate production and extracellular acidification. Nitric oxide production was quantified using Greiss reagent. Gene expression of inducible nitric oxide synthase (iNOS), phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB or Akt), mammalian target of rapamycin (mTOR), hypoxia-inducible factor 1α(HIF-1α) and PD-L1 was quantified by quantitative reverse transcription polymerase chain reaction (q-RT-PCR). Chitosan, lecithin and the NPs-formulated forms have been shown to influence the 'Warburg effect' and immune checkpoint signaling of TNBC cells differently. The composition of the hybrid systems dictated their subcellular localization and hence the positive or negative impact on the immunosuppressive characteristics of TNBC cells. Carefully engineered hybrid lecithin-chitosan NPs could convert the immune-suppressive microenvironment of TNBC to an immune-active microenvironment via reduction of PD-L1 expression and reversal of the Warburg effect.


Subject(s)
Chitosan , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , B7-H1 Antigen , Lecithins , Biocompatible Materials , Tumor Microenvironment
7.
Sci Rep ; 12(1): 4386, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288623

ABSTRACT

Cellulose and Nanocellulose acetate (NCA) have attractive novel properties like excellent mechanical properties, rich hydroxyl groups for modification, and natural properties with environmental friendliness. Cellulose was extracted from rice straw wastes as an extra value, then it had been further transformed into NCA using the acidic hydrolysis technique. The structural, crystalline, morphological, were characterized by Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (1HNMR), X-ray diffraction (XRD), Scanning microscopy, respectively. The particle size of the Nanocellulose extracted from rice straw was about 22 nm with a spherical shape. Development membranes were prepared with different concentrations of NCA to improve the performance and the anti-biofouling properties of cellulose acetate reverse osmosis (RO) membranes using a phase inversion technique. The structural of membranes were characterized by FTIR, water contact angle measurements, while the anti-biofouling properties were studied by static protein adsorption. The results indicated the development membrane features a lower contact angle accomplished with exhibits pore-forming ability and enhanced hydrophilicity of prepared membrane, furthermore the development cellulose acetate reverse osmosis (CA-RO) membranes with 40:60% RNCA:CA produced a salt rejection of 97.4% and a water flux of 2.2 L/m2 h. the development membrane have resists effectively protein adsorption and microbial growth showed from the results of Static protein adsorption.


Subject(s)
Oryza , Water , Cellulose/analogs & derivatives , Cellulose/chemistry , Membranes, Artificial , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...