Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
2.
Genet Test Mol Biomarkers ; 28(4): 151-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657121

ABSTRACT

Introduction: Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the AGXT gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. Subjects and Methods: This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the AGXT gene. Results: Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Conclusion: Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo AGXT genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.


Subject(s)
Hyperoxaluria, Primary , Transaminases , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Egypt , Frameshift Mutation/genetics , Homozygote , Hyperoxaluria, Primary/genetics , Mutation , Mutation, Missense/genetics , Transaminases/genetics , Transaminases/metabolism
3.
Pediatr Nephrol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261064

ABSTRACT

The incidence of rare diseases is expected to be comparatively higher in the Middle East and North Africa (MENA) region than in other parts of the world, attributed to the high prevalence of consanguinity. Most MENA countries share social and economic statuses, cultural relativism, religious beliefs, and healthcare policies. Polycystic kidney diseases (PKDs) are the most common genetic causes of kidney failure, accounting for nearly 8.0% of dialysis cases. The development of PKDs is linked to variants in several genes, including PKD1, PKD2, PKHD1, DZIP1L, and CYS1. Autosomal recessive PKD (ARPKD) is the less common yet aggressive form of PKD. ARPKD has an estimated incidence between 1:10,000 and 1:40,000. Most patients with ARPKD require kidney replacement therapy earlier than patients with autosomal dominant polycystic kidney disease (ADPKD), often in their early years of life. This review gathered data from published research studies and reviews of ARPKD, highlighting the epidemiology, phenotypic presentation, investigations, genetic analysis, outcomes, and management. Although limited data are available, the published literature suggests that the incidence of ARPKD may be higher in the MENA region due to consanguineous marriages. Patients with ARPKD from the MENA region usually present at a later disease stage and have a relatively short time to progress to kidney failure. Limited data are available regarding the management practice in the region, which warrants further investigations.

4.
Lab Med ; 55(2): 153-161, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37352143

ABSTRACT

BACKGROUND: While we strive to live with SARS-CoV-2, defining the immune response that leads to recovery rather than severe disease remains highly important. COVID-19 has been associated with inflammation and a profoundly suppressed immune response. OBJECTIVE: To study myeloid-derived suppressor cells (MDSCs), which are potent immunosuppressive cells, in SARS-CoV-2 infection. RESULTS: Patients with severe and critical COVID-19 showed higher frequencies of neutrophilic (PMN)-MDSCs than patients with moderate illness and control individuals (P = .005). Severe disease in individuals older and younger than 60 years was associated with distinct PMN-MDSC frequencies, being predominantly higher in patients of 60 years of age and younger (P = .004). However, both age groups showed comparable inflammatory markers. In our analysis for the prediction of poor outcome during hospitalization, MDSCs were not associated with increased risk of death. Still, patients older than 60 years of age (odds ratio [OR] = 5.625; P = .02) with preexisting medical conditions (OR = 2.818; P = .003) showed more severe disease and worse outcome. Among the immunological parameters, increased C-reactive protein (OR = 1.015; P = .04) and lymphopenia (OR = 5.958; P = .04) strongly identified patients with poor prognosis. CONCLUSION: PMN-MDSCs are associated with disease severity in COVID-19; however, MDSC levels do not predict increased risk of death during hospitalization.


Subject(s)
COVID-19 , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/metabolism , SARS-CoV-2 , Inflammation/metabolism
5.
Nat Rev Nephrol ; 19(3): 194-211, 2023 03.
Article in English | MEDLINE | ID: mdl-36604599

ABSTRACT

Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.


Subject(s)
Hyperoxaluria, Primary , Renal Insufficiency , Humans , Child , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Consensus , Renal Dialysis , Oxalates , Rare Diseases
6.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36185583

ABSTRACT

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

7.
Sci Rep ; 12(1): 15886, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151119

ABSTRACT

Primary hyperoxaluria (PH) is an autosomal recessive disorder of oxalate metabolism caused by pathogenic variants in either of three genes (AGXT, GRHPR or HOGA1). The study aimed at characterizing the clinical phenotypes as well as the genotypic spectrum of PH in Egypt. We screened 25 Egyptian patients suspected of PH for the three responsible genes by Sanger sequencing. We diagnosed 20 patients from 18 unrelated families, in which the natural history, family history, clinical features and genotypes were evaluated. PH patients were 15 males and 5 females ranging in age from 4 months to 31 years (median 8 years). Fifteen families were consanguineous (83%) and familial clustering was reported in six families (33%). Pathogenic variants in all 40 alleles were in AGXT, with none detected in GRHPR or HOGA1. We detected two novel pathogenic variants c.166-1_172dupGATCATGG (p.Asp58Glyfs*65) and c.766delC (p.Gln256fs*16) and seven previously reported variants in our cohort. This is the first study reporting the genotype of a considerable number of PH1 patients from Egypt. Our detected variants in the AGXT gene could form the basis for future genetic counseling and prenatal diagnosis in Egypt and surrounding populations.


Subject(s)
Hyperoxaluria, Primary , Adolescent , Adult , Child , Child, Preschool , Egypt/epidemiology , Female , Humans , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/epidemiology , Hyperoxaluria, Primary/genetics , Infant , Male , Mutation , Oxalates , Phenotype , Transaminases/genetics , Young Adult
8.
Clin Kidney J ; 15(Suppl 1): i33-i36, 2022 May.
Article in English | MEDLINE | ID: mdl-35592622

ABSTRACT

Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inborn error of metabolism characterized by marked hepatic overproduction of oxalate due to deficiency of hepatic peroxisomal alanine-glyoxylate aminotransferase caused by AGXT gene mutation. One major hallmark of PH1 in developed as well as developing countries (DC) is the diagnostic delay. Notably in DC, where the disease is most prevalent and probably underdiagnosed, there are many challenges in PH1 diagnosis and management, with economic constrains and ethical concerns. This has led to the existing gap in the management of PH1 between developed and DC, which is expected to further deepen with the advent of novel therapeutic agents unless appropriate actions are taken. Until recently, treatment possibilities were limited to supportive measures. Thanks to a better understanding of the molecular basis of the disease a number of new therapies are developed, or being developed, leading to profound changes in management strategies. In this review we discuss the current situation of PH1 in DC as well as the accessibility challenges and the advantages of using promising novel therapeutics to bridge the currently existing gap. We also provide an overview of an integrated approach to ensure equitable access of sustainable therapeutics to PH1 patients in DC. This is expected to reduce global PH1 healthcare disparities, improve its standard of care and reduce disability linked to extrarenal complications of PH1 by implementing personalized medicine.

9.
Cells ; 11(7)2022 03 25.
Article in English | MEDLINE | ID: mdl-35406673

ABSTRACT

Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected at an early stage using appropriate diagnostics, the introduction of a new target disease requires a detailed analysis of the entire screening process, including a robust scientific background, analytics, information technology, and logistics. In addition, ethics, financing, and the required medical measures need to be considered to allow the benefits of screening to be evaluated at a higher level than its potential harm. Infantile nephropathic cystinosis (INC) is a very rare lysosomal metabolic disorder. With the introduction of cysteamine therapy in the early 1980s and the possibility of renal replacement therapy in infancy, patients with cystinosis can now reach adulthood. Early diagnosis of cystinosis remains important as this enables initiation of cysteamine at the earliest opportunity to support renal and patient survival. Using molecular technologies, the feasibility of screening for cystinosis has been demonstrated in a pilot project. This review aims to provide insight into NBS and discuss its importance for nephropathic cystinosis using molecular technologies.


Subject(s)
Cystinosis , Fanconi Syndrome , Adult , Cysteamine/therapeutic use , Cystinosis/complications , Cystinosis/diagnosis , Cystinosis/drug therapy , Fanconi Syndrome/complications , Humans , Infant, Newborn , Neonatal Screening , Pilot Projects
10.
Pediatr Nephrol ; 37(7): 1555-1566, 2022 07.
Article in English | MEDLINE | ID: mdl-34791528

ABSTRACT

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by kidney and extra-renal complications due to the accumulation of cystine crystals in various tissues and organs. Herein, we describe the early neuromuscular complications in a cohort of pediatric nephropathic cystinosis patients. METHODS: We prospectively evaluated the clinical, biochemical, and neurophysiological data of 15 cystinosis patients. Neurophysiological evaluation was performed to confirm or exclude presence of neuropathy and/or myopathy. RESULTS: Patients' age ranged between 20 and 216 months at time of examination. Nine patients were males. Three patients had early abnormal neurophysiological features consistent with neuromuscular involvement (clinically asymptomatic proximal myopathy with a patchy distribution in one patient and isolated asymptomatic sensory nerve conduction changes in two patients). A fourth patient had mixed abnormal motor and sensory axonal neuropathic changes associated with overt clinical features (predominantly motor symptoms). Patients with abnormal neuromuscular features were significantly older in age than the unaffected group (P = 0.005) and had a diagnosis of cystinosis with subsequent cysteamine therapy at a significantly older age than the unaffected group (P = 0.027 and 0.001, respectively). CONCLUSIONS: We expanded the recognized phenotypes of cystinosis neuromuscular complications with early proximal skeletal myopathy and symptomatic motor and sensory axonal neuropathy. Early asymptomatic neuromuscular complications could develop in pediatric patients and would require neurophysiological studies for early detection prior to development of overt clinical manifestations. Prompt diagnosis and timely initiation of cysteamine therapy with recommended dose can delay the development of neuromuscular complications. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Cystinosis , Fanconi Syndrome , Muscular Diseases , Adolescent , Child , Cohort Studies , Cysteamine/therapeutic use , Cystinosis/complications , Cystinosis/diagnosis , Cystinosis/drug therapy , Female , Humans , Male , Muscular Diseases/chemically induced , Muscular Diseases/complications
11.
Genet Med ; 24(2): 307-318, 2022 02.
Article in English | MEDLINE | ID: mdl-34906515

ABSTRACT

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Subject(s)
Urinary Tract , Urogenital Abnormalities , Alleles , Exome/genetics , Humans , Kidney/abnormalities , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux
12.
Kidney Int Rep ; 6(11): 2862-2884, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34805638

ABSTRACT

INTRODUCTION: Because of phenotypic overlap between monogenic urinary stone diseases (USD), gene-specific analyses can result in missed diagnoses. We used targeted next generation sequencing (tNGS), including known and candidate monogenic USD genes, to analyze suspected primary hyperoxaluria (PH) or Dent disease (DD) patients genetically unresolved (negative; N) after Sanger analysis of the known genes. Cohorts consisted of 285 PH (PHN) and 59 DD (DDN) families. METHODS: Variants were assessed using disease-specific and population databases plus variant assessment tools and categorized using the American College of Medical Genetics (ACMG) guidelines. Prior Sanger analysis identified 47 novel PH or DD gene pathogenic variants. RESULTS: Screening by tNGS revealed pathogenic variants in 14 known monogenic USD genes, accounting for 45 families (13.1%), 27 biallelic and 18 monoallelic, including 1 family with a copy number variant (CNV). Recurrent genes included the following: SLC34A3 (n = 13), CLDN16 (n = 8), CYP24A1 (n = 4), SLC34A1 (n = 3), SLC4A1 (n = 3), APRT (n = 2), CLDN19 (n = 2), HNF4A1 (n = 2), and KCNJ1 (n = 2), whereas ATP6V1B1, CASR, and SLC12A1 and missed CNVs in the PH genes AGXT and GRHPR accounted for 1 pedigree each. Of the 48 defined pathogenic variants, 27.1% were truncating and 39.6% were novel. Most patients were diagnosed before 18 years of age (76.1%), and 70.3% of biallelic patients were homozygous, mainly from consanguineous families. CONCLUSION: Overall, in patients suspected of DD or PH, 23.9% and 7.3% of cases, respectively, were caused by pathogenic variants in other genes. This study shows the value of a tNGS screening approach to increase the diagnosis of monogenic USD, which can optimize therapies and facilitate enrollment in clinical trials.

13.
J Infect Public Health ; 14(7): 922-926, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34119846

ABSTRACT

The novel coronavirus 2019 pandemic has become a global health crisis. In an attempt to decipher how kidneys are affected by COVID-19 infection, this review focuses on pathogenic and clinical links between COVID-19 infection and the kidneys. SARS-CoV-2 infected patients are target for kidney affection, renal tropism, among other multiorgan complications. COVID-19 related kidney affection is reported not only in infected chronic kidney disease patients but also in those with no prior history of kidney disease. As nephrologists try to keep up with the rapidly evolving, sometimes hasty, reports on renal affection in COVID-19, kidneys continue to be deleteriously affected particularly in critical care settings. This review aims to briefly portray renal involvement in COVID-19 amid this unprecedented deluge of scientific data. Based on gained knowledge and expertise, it is prudent to develop and regularly update preventive, diagnostic and therapeutic strategies to improve clinical outcome and reduce mortality.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Humans , Kidney , Pandemics , SARS-CoV-2
14.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Article in English | MEDLINE | ID: mdl-33872655

ABSTRACT

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Subject(s)
Antigens, Neoplasm/genetics , Exome Sequencing , Genetic Predisposition to Disease , Primary Immunodeficiency Diseases/immunology , Virus Diseases/genetics , Antigens, Neoplasm/immunology , Child , Child, Preschool , Female , Humans , Infant , Inflammation/diagnostic imaging , Inflammation/genetics , Inflammation/immunology , Male , Primary Immunodeficiency Diseases/diagnostic imaging , Primary Immunodeficiency Diseases/genetics , Virus Diseases/diagnostic imaging , Virus Diseases/immunology
15.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523862

ABSTRACT

Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.


Subject(s)
Adaptor Proteins, Signal Transducing , Kidney Diseases , Nephrotic Syndrome , Podocytes , Actins/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Formins/genetics , Humans , Kidney Diseases/metabolism , Mice , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Podocytes/metabolism
16.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Article in English | MEDLINE | ID: mdl-33593823

ABSTRACT

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Subject(s)
DNA-Binding Proteins/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Mutation, Missense , Nephrosis/genetics , Transcription Factors/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Child, Preschool , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/deficiency , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Nephrotic Syndrome/genetics , Podocytes/metabolism , Polymorphism, Single Nucleotide , Pronephros/embryology , Pronephros/metabolism , Protein Stability , Transcription Factors/chemistry , Transcription Factors/deficiency , Xenopus laevis/embryology , Xenopus laevis/genetics , Zinc Fingers/genetics
17.
Am J Hum Genet ; 107(6): 1113-1128, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33232676

ABSTRACT

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.


Subject(s)
Actins/metabolism , Genetic Variation , Microfilament Proteins/genetics , Nephrotic Syndrome/genetics , rho GTP-Binding Proteins/genetics , Alleles , Animals , Animals, Genetically Modified , Cell Movement/genetics , Cytoplasm/metabolism , Formins/metabolism , Humans , Kidney/metabolism , Kidney Glomerulus/metabolism , Mutation, Missense , Podocytes/metabolism , Pseudopodia/metabolism , RNA, Small Interfering/metabolism , Exome Sequencing , Xenopus
18.
Pediatr Nephrol ; 35(12): 2307-2317, 2020 12.
Article in English | MEDLINE | ID: mdl-32666370

ABSTRACT

BACKGROUND: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder that initially affects the kidney progressing to multi-organ failure due to accumulation of cystine in all tissue compartments. OBJECTIVE: The main objective of this study is the evaluation of cardiac function in cystinosis patients using non-conventional echocardiographic modalities like pulsed wave tissue Doppler imaging (PW-TDI) and 2D speckle tracking echocardiography (2D-STE). METHODS: This is a case control study conducted on fifteen patients with cystinosis and 15 normal controls. Echocardiography was done for all participants and PW-TDI was performed for measurement of S', E', A' velocities and myocardial performance index (MPI) at basal parts of septal, left ventricle (LV), and right ventricle (RV) free walls. 2D-STE was done for evaluation of global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) of LV. Mitral E and A velocities and tricuspid annular plane systolic excursion (TAPSE) were also measured. RESULTS: The GLS, GRS, and S' velocity at basal septum and LV lateral wall were significantly lower in patients denoting LV systolic dysfunction (p = 0.005, p < 0.0001, p = 0.001, p = 0.006, respectively), while E/E' were significantly higher in patients group denoting LV diastolic dysfunction (p < 0.001). For RV function, TAPSE, S', and E' velocity were significantly lower in patients group (p 0.013, p < 0.01, p = 0.05, respectively) indicating RV systolic and diastolic dysfunction. The TDI-derived MPI for both LV and RV were significantly higher in patients group (p < 0.0001, p < 0.01, respectively) indicating both ventricular systolic and diastolic dysfunction. For prediction of cardiac dysfunction among patients, the receiver operating characteristic (ROC) curve showed that GRS ≤ 29% had sensitivity 93.3% and specificity 100%, GLS > - 20.1% had sensitivity 66.7% and specificity 93.3%, LV-E/E' >7.87 had sensitivity 73.3% and specificity 93.3%, and MPI-LV > 0.36 had sensitivity 100% and specificity 93.3% while MPI-RV > 0.29 had sensitivity 80% and specificity 93.3% and TAPSE ≤ 19 mm had sensitivity 80% and specificity 73.3%. CONCLUSIONS: Patients with cystinosis have significant both left and right ventricular dysfunction, which can be better evaluated using the non-conventional echocardiographic modalities like TDI and 2D-STE for early detection of subtle cardiac dysfunction.


Subject(s)
Cystinosis/physiopathology , Ventricular Dysfunction/physiopathology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Cystinosis/complications , Echocardiography, Doppler , Female , Humans , Infant , Male , Prospective Studies , Rare Diseases , Ventricular Dysfunction/etiology , Young Adult
19.
Kidney Int Rep ; 4(9): 1271-1284, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31517146

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of renal failure. For several decades, ADPKD was regarded as an adult-onset disease. In the past decade, it has become more widely appreciated that the disease course begins in childhood. However, evidence-based guidelines on how to manage and approach children diagnosed with or at risk of ADPKD are lacking. Also, scoring systems to stratify patients into risk categories have been established only for adults. Overall, there are insufficient data on the clinical course during childhood. We therefore initiated the global ADPedKD project to establish a large international pediatric ADPKD cohort for deep characterization. METHODS: Global ADPedKD is an international multicenter observational study focusing on childhood-diagnosed ADPKD. This collaborative project is based on interoperable Web-based databases, comprising 7 regional and independent but uniformly organized chapters, namely Africa, Asia, Australia, Europe, North America, South America, and the United Kingdom. In the database, a detailed basic data questionnaire, including genetics, is used in combination with data entry from follow-up visits, to provide both retrospective and prospective longitudinal data on clinical, radiologic, and laboratory findings, as well as therapeutic interventions. DISCUSSION: The global ADPedKD initiative aims to characterize in detail the most extensive international pediatric ADPKD cohort reported to date, providing evidence for the development of unified diagnostic, follow-up, and treatment recommendations regarding modifiable disease factors. Moreover, this registry will serve as a platform for the development of clinical and/or biochemical markers predicting the risk of early and progressive disease.

20.
J Inherit Metab Dis ; 42(5): 1019-1029, 2019 09.
Article in English | MEDLINE | ID: mdl-31177550

ABSTRACT

Cystinosis is an autosomal recessive storage disease due to impaired transport of cystine out of lysosomes. Since the accumulation of intracellular cystine affects all organs and tissues, the management of cystinosis requires a specialized multidisciplinary team consisting of pediatricians, nephrologists, nutritionists, ophthalmologists, endocrinologists, neurologists' geneticists, and orthopedic surgeons. Treatment with cysteamine can delay or prevent most clinical manifestations of cystinosis, except the renal Fanconi syndrome. Virtually all individuals with classical, nephropathic cystinosis suffer from cystinosis metabolic bone disease (CMBD), related to the renal Fanconi syndrome in infancy and progressive chronic kidney disease (CKD) later in life. Manifestations of CMBD include hypophosphatemic rickets in infancy, and renal osteodystrophy associated with CKD resulting in bone deformities, osteomalacia, osteoporosis, fractures, and short stature. Assessment of CMBD involves monitoring growth, leg deformities, blood levels of phosphate, electrolytes, bicarbonate, calcium, and alkaline phosphatase, periodically obtaining bone radiographs, determining levels of critical hormones and vitamins, such as thyroid hormone, parathyroid hormone, 25(OH) vitamin D, and testosterone in males, and surveillance for nonrenal complications of cystinosis such as myopathy. Treatment includes replacement of urinary losses, cystine depletion with oral cysteamine, vitamin D, hormone replacement, physical therapy, and corrective orthopedic surgery. The recommendations in this article came from an expert meeting on CMBD that took place in Salzburg, Austria, in December 2016.


Subject(s)
Bone Diseases/therapy , Cysteamine/therapeutic use , Cystinosis/drug therapy , Administration, Oral , Bone Diseases/etiology , Cysteamine/administration & dosage , Cystinosis/complications , Disease Management , Fanconi Syndrome/drug therapy , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...