Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 60(13): 3659-3667, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983298

ABSTRACT

This paper presents a new trend in biometric security systems, which is cancelable multi-biometrics. In general, traditional biometric systems depend on a single biometric for identification. These traditional systems are subject to different types of attacks. In addition, a biometric signature may be lost in hacking scenarios; for example, in the case of intrusion, biometric signatures can be stolen forever. To reduce the risk of losing biometric signatures, the trend of cancelable biometrics has evolved by using either deformed or encrypted versions of biometrics for verification. In this paper, several biometric traits for the same person are treated to obtain a single cancelable template. First, optical scanning holography (OSH) is applied during the acquisition of each biometric. The resulting outputs are then compressed simultaneously to generate a unified template based on the energy compaction property of the discrete cosine transform (DCT). Hence, the OSH is used in the proposed approach as a tool to generate deformed versions of human biometrics in order to get the unified biometric template through DCT compression. With this approach, we guarantee the possibility of using multiple biometrics of the same user to increase security, as well as privacy of the new biometric template through utilization of the OSH. Simulation results prove the robustness of the proposed cancelable multi-biometric approach in noisy environments.


Subject(s)
Biometry/methods , Computer Security , Data Compression/methods , Holography/methods , Computer Simulation , Dermatoglyphics , Hand , Humans , Iris , ROC Curve
2.
Appl Opt ; 57(35): 10305-10316, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645240

ABSTRACT

Most modern security systems depend on biometrics. Unfortunately, these systems have suffered from hacking trials. If the biometric databases have been hacked and stolen, the biometrics saved in these databases will be lost forever. Thus, there is a desperate need to develop new cancelable biometric systems. The basic concept of cancelable biometrics is to use another version of the original biometric template created through a one-way transform or an encryption scheme to keep the original biometrics safe and away from utilization in the system. In this paper, the optical double random phase encoding (DRPE) algorithm is utilized for cancelable face and iris recognition systems. In the proposed cancelable face recognition scheme, the scale invariant feature transform is used for feature extraction from the face images. The extracted feature map is encrypted with the DRPE algorithm. The proposed cancelable iris recognition system depends on the utilization of two iris images for the same person and features are extracted from both images. The features extracted from one of the iris images are encrypted with the DRPE algorithm, provided that the second phase mask used in the DRPE is generated from the other iris image features. This trend guarantees some sort of feature fusion between the two iris images into a single cancelable iris code and increases user privacy. Simulation results show good performance of the two proposed cancelable biometric schemes even in the presence of noise, especially with the proposed cancelable face recognition scheme.


Subject(s)
Biometric Identification/methods , Facial Recognition , Iris/anatomy & histology , Algorithms , Artificial Intelligence , Humans , Pattern Recognition, Automated/methods
3.
Bioorg Med Chem ; 24(2): 113-22, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26692349

ABSTRACT

Fungi of the genus Penicillium produce unique and chemically diverse biologically active secondary metabolites, including indole alkaloids. The role of dysregulated hepatocyte growth factor (HGF) and its receptor, c-Met, in the development and progression of breast carcinoma is documented. The goal of this work is to explore the chemistry and bioactivity of the secondary metabolites of the endophytic Penicillium chrysogenum cultured from the leaf of the olive tree Olea europea, collected in its natural habitat in Egypt. This fungal extract showed good inhibitory activities against the proliferation and migration of several human breast cancer lines. The CH2Cl2 extract of P. chrysogenum mycelia was subjected to bioguided chromatographic separation to afford three known indole alkaloids; meleagrin (1), roquefortine C (2) and DHTD (3). Meleagrin inhibited the growth of the human breast cancer cell lines MDA-MB-231, MDA-468, BT-474, SK BR-3, MCF7 and MCF7-dox, while similar treatment doses were found to have no effect on the growth and viability of the non-tumorigenic human mammary epithelial cells MCF10A. Meleagrin also showed excellent ATP competitive c-Met inhibitory activity in Z-Lyte assay, which was further confirmed via molecular docking studies and Western blot analysis. In addition, meleagrin treatment caused a dose-dependent inhibition of HGF-induced cell migration, and invasion of breast cancer cell lines. Meleagrin treatment potently suppressed the invasive triple negative breast tumor cell growth in an orthotopic athymic nude mice model, promoting this unique natural product from hit to a lead rank. The indole alkaloid meleagrin is a novel lead c-Met inhibitory entity useful for the control of c-Met-dependent metastatic and invasive breast malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Indole Alkaloids/pharmacology , Olea/microbiology , Ovomucin/pharmacology , Penicillium chrysogenum/chemistry , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Epithelial Cells/drug effects , Female , Humans , Indole Alkaloids/chemistry , Indole Alkaloids/isolation & purification , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasm Invasiveness/pathology , Ovomucin/chemistry , Ovomucin/isolation & purification , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...