Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Comput Sci ; 3(3): 264-276, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38177882

ABSTRACT

The increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation. Together with 3D soma positioning we provide a connectivity matrix generated using a morpho-anatomical connection strategy based on axonal and dendritic probability density functions accounting for morphological properties of hippocampal neurons. The data and algorithms are supplied in a ready-to-use format, suited to implement computational models at different scales and detail.


Subject(s)
Dendrites , Hippocampus , Humans , Dendrites/physiology , Hippocampus/physiology , Neurons/physiology , Axons/physiology , Temporal Lobe
2.
PLoS Comput Biol ; 15(4): e1006975, 2019 04.
Article in English | MEDLINE | ID: mdl-31017891

ABSTRACT

Across the mammalian nervous system, neurotrophins control synaptic plasticity, neuromodulation, and neuronal growth. The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is known to promote structural and functional synaptic plasticity in the hippocampus, the cerebral cortex, and many other brain areas. In recent years, a wealth of data has been accumulated revealing the paramount importance of BDNF for neuronal function. BDNF signaling gives rise to multiple complex signaling pathways that mediate neuronal survival and differentiation during development, and formation of new memories. These different roles of BDNF for neuronal function have essential consequences if BDNF signaling in the brain is reduced. Thus, BDNF knock-out mice or mice that are deficient in BDNF receptor signaling via TrkB and p75 receptors show deficits in neuronal development, synaptic plasticity, and memory formation. Accordingly, BDNF signaling dysfunctions are associated with many neurological and neurodegenerative conditions including Alzheimer's and Huntington's disease. However, despite the widespread implications of BDNF-dependent signaling in synaptic plasticity in healthy and pathological conditions, the interplay of the involved different biochemical pathways at the synaptic level remained mostly unknown. In this paper, we investigated the role of BDNF/TrkB signaling in spike-timing dependent plasticity (STDP) in rodent hippocampus CA1 pyramidal cells, by implementing the first subcellular model of BDNF regulated, spike timing-dependent long-term potentiation (t-LTP). The model is based on previously published experimental findings on STDP and accounts for the observed magnitude, time course, stimulation pattern and BDNF-dependence of t-LTP. It allows interpreting the main experimental findings concerning specific biomolecular processes, and it can be expanded to take into account more detailed biochemical reactions. The results point out a few predictions on how to enhance LTP induction in such a way to rescue or improve cognitive functions under pathological conditions.


Subject(s)
Action Potentials/physiology , Brain-Derived Neurotrophic Factor/metabolism , Long-Term Potentiation/physiology , Models, Neurological , Animals , Brain-Derived Neurotrophic Factor/genetics , Computational Biology , Hippocampus/cytology , Male , Memory/physiology , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Neurons/physiology , Rats, Wistar , Signal Transduction/physiology
3.
Eur J Neurosci ; 23(5): 1207-18, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16553783

ABSTRACT

In neurons with large dendritic arbors, the postsynaptic potentials interact in a complex manner with active and passive membrane properties, causing not easily predictable transformations during the propagation from synapse to soma. Previous theoretical and experimental studies in both cerebellar Purkinje cells and neocortical pyramidal neurons have shown that voltage-dependent ion channels change the amplitude and time-course of postsynaptic potentials. We investigated the mechanisms involved in the propagation of inhibitory postsynaptic potentials (IPSPs) along active dendrites in a model of the Purkinje cell. The amplitude and time-course of IPSPs recorded at the soma were dependent on the synaptic distance from the soma, as predicted by passive cable theory. We show that the effect of distance on the amplitude and width of the IPSP was significantly reduced by the dendritic ion channels, whereas the rise time was not affected. Somatic IPSPs evoked by the activation of the most distal synapses were up to six times amplified owing to the presence of voltage-gated channels and the IPSP width became independent of the covered distance. A transient deactivation of the Ca(2+) channels and the Ca(2+)-dependent K(+) channels, triggered by the hyperpolarization following activation of the inhibitory synapse, was found to be responsible for these dynamics. Nevertheless, the position of activated synapses had a marked effect on the Purkinje cell firing pattern, making stellate cells and basket cells most suitable for controlling the firing rate and spike timing, respectively, of their target Purkinje cells.


Subject(s)
Dendrites/metabolism , Membrane Potentials/physiology , Models, Neurological , Purkinje Cells , Animals , Calcium Channels/metabolism , Dendrites/ultrastructure , Guinea Pigs , Potassium Channels, Calcium-Activated/metabolism , Purkinje Cells/cytology , Purkinje Cells/metabolism , Synapses/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...