Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Food ; 2(10): 819-827, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37117978

ABSTRACT

The effective utilization of natural variation has become essential in addressing the challenges that climate change and population growth pose to global food security. Currently adopted protracted approaches to introgress exotic alleles into elite cultivars need substantial transformation. Here, through a strategic three-way crossing scheme among diverse exotics and the best historical elites (exotic/elite1//elite2), 2,867 pre-breeding lines were developed, genotyped and screened for multiple agronomic traits in four mega-environments. A meta-genome-wide association study, selective sweeps and haplotype-block-based analyses unveiled selection footprints in the genomes of pre-breeding lines as well as exotic-specific associations with agronomic traits. A simulation with a neutrality assumption demonstrated that many pre-breeding lines had significant exotic contributions despite substantial selection bias towards elite genomes. National breeding programmes worldwide have adopted 95 lines for germplasm enhancement, and 7 additional lines are being advanced in varietal release trials. This study presents a great leap forwards in the mobilization of GenBank variation to the breeding pipelines.

2.
Sci Rep ; 6: 27312, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27311707

ABSTRACT

Genomic and pedigree predictions for grain yield and agronomic traits were carried out using high density molecular data on a set of 803 spring wheat lines that were evaluated in 5 sites characterized by several environmental co-variables. Seven statistical models were tested using two random cross-validations schemes. Two other prediction problems were studied, namely predicting the lines' performance at one site with another (pairwise-site) and at untested sites (leave-one-site-out). Grain yield ranged from 3.7 to 9.0 t ha(-1) across sites. The best predictability was observed when genotypic and pedigree data were included in the models and their interaction with sites and the environmental co-variables. The leave-one-site-out increased average prediction accuracy over pairwise-site for all the traits, specifically from 0.27 to 0.36 for grain yield. Days to anthesis, maturity, and plant height predictions had high heritability and gave the highest accuracy for prediction models. Genomic and pedigree models coupled with environmental co-variables gave high prediction accuracy due to high genetic correlation between sites. This study provides an example of model prediction considering climate data along-with genomic and pedigree information. Such comprehensive models can be used to achieve rapid enhancement of wheat yield enhancement in current and future climate change scenario.


Subject(s)
Agriculture , Edible Grain/genetics , Triticum/genetics , Bread , Environment , Genetic Variation/genetics , Genome, Plant/genetics , Genotype , Models, Statistical , Seasons , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...