Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397116

ABSTRACT

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.


Subject(s)
Verticillium , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci , Gene Expression Profiling , Gossypium/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Gene Expression Regulation, Plant
2.
PLoS Genet ; 14(9): e1007636, 2018 09.
Article in English | MEDLINE | ID: mdl-30265668

ABSTRACT

Phytopathogens have a limited range of host plant species that they can successfully parasitise ie. that they are adapted for. Infection of plants by nonadapted pathogens often results in an active resistance response that is relatively poorly characterised because phenotypic variation in this response often does not exist within a plant species, or is too subtle for genetic dissection. In addition, complex polygenic inheritance often underlies these resistance phenotypes and mutagenesis often does not impact upon this resistance, presumably due to genetic or mechanistic redundancy. Here it is demonstrated that phenotypic differences in the resistance response of Brachypodium distachyon to the nonadapted wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) are genetically tractable and simply inherited. Two dominant loci were identified on B. distachyon chromosome 4 that each reduce attempted Pst colonisation compared with sib and parent lines without these loci. One locus (Yrr1) is effective against diverse Australian Pst isolates and present in two B. distachyon mapping families as a conserved region that was reduced to 5 candidate genes by fine mapping. A second locus, Yrr2, shows Pst race-specificity and encodes a disease resistance gene family typically associated with host plant resistance. These data indicate that some components of resistance to nonadapted pathogens are genetically tractable in some instances and may mechanistically overlap with host plant resistance to avirulent adapted pathogens.


Subject(s)
Basidiomycota/pathogenicity , Brachypodium/genetics , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Brachypodium/microbiology , Chromosome Mapping , DNA, Plant/genetics , Genes, Plant/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Sequence Analysis, DNA , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...