Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 307(10): 3282-3305, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38529857

ABSTRACT

Previous studies on anuran anomalies predominantly examine isolated cases or focus on external and skeletal features. Our study analyzes a comprehensive sample collected from 1991 to 2017, examining the muscle-tendon system in 24 anuran species across adult, juvenile, and metamorphic stages. This extensive sample size allows us to investigate consistent anomaly patterns across different developmental stages and anuran families, exploring potential common developmental or genetic factors. Our detailed anatomical examination, encompassing musculature, tendons, and skeletal structures, revealed that 21% of the specimens displayed anomalies, a noteworthy finding considering the extensive sample size and duration of the studied sample. Of these anomalies, 17% affected the locomotor system, predominantly in the upper limbs. Key anomalies included, forelimbs and hindlimbs brachydactyly, rotation in forelimbs, partial kyphotic lordosis, and scoliosis. Notably, the digit 4 in the forelimbs and digits 4 and 5 in the hindlimbs were particularly susceptible to teratogenic effects, indicating possible prolonged exposure during development. Our study also uncovered combinations of anomalies and identified a phenotype similar to Poland syndrome. The findings validate the "Logic of Monsters" (LoMo theory) by Alberch, although the name itself may not be deemed appropriate, showing that developmental disruptions in tetrapods are not random but follow distinct sequences and patterns. The name, while unfortunate, accurately reflects the unusual nature of these developmental anomalies. This contributes to the evolving "Evo-Devo-Path" framework, highlighting the study's importance in understanding developmental disruptions in tetrapods.


Subject(s)
Anura , Tendons , Animals , Anura/abnormalities , Anura/anatomy & histology , Tendons/abnormalities , Locomotion/physiology , Forelimb/abnormalities , Hindlimb/abnormalities , Muscle, Skeletal/abnormalities
2.
J Morphol ; 279(7): 904-924, 2018 07.
Article in English | MEDLINE | ID: mdl-29665044

ABSTRACT

The development of the tetrapod pectoral and pelvic girdles is intimately linked to the proximal segments of the fore- and hindlimbs. Most studies on girdles are osteological and provide little information about soft elements such as muscles and tendons. Moreover, there are few comparative developmental studies. Comparative data gleaned from cleared-and-stained whole mounts and serial histological sections of 10 species of hylid frogs are presented here. Adult skeletal morphology, along with bones, muscles, and connective tissue of both girdles and their association with the proximal portions of the anuran fore- and hindlimbs are described. The data suggest that any similarity could be attributable to the constraints of their ball-and-socket joints, including incorporation of the girdle and stylopodium into a single developmental module. An ancestral state reconstruction of key structures and developmental episodes reveals that several development events occur at similar stages in different species, thereby preventing heterochronic changes. The medial contact of the halves of the pectoral girdle coincides with the emergence of the forelimbs from the branchial chamber and with the total differentiation of the linkage between the axial skeleton and the girdles. The data suggest that morphogenic activity in the anterior dorsal body region is greater than in the posterior one, reflecting the evolutionary sequence of the development of the two girdles in ancient tetrapods. The data also document the profound differences in the anatomy and development of the pectoral and pelvic girdles, supporting the proposal that the pectoral and pelvic girdles are not serially homologous, as was long presumed.


Subject(s)
Anatomy, Comparative , Anura/anatomy & histology , Anura/growth & development , Forelimb/anatomy & histology , Hindlimb/anatomy & histology , Animals , Organogenesis , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL