Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 216: 118327, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35339970

ABSTRACT

To make purple phototrophic bacteria (PPB)-based technologies a reality for resource recovery, research must be demonstrated outdoors, using scaled reactors. In this study, a 10 m long PPB-enriched flat plate photobioreactor (FPPBR) with a volume of 0.95 m3 was operated for 253 days, fed with poultry processing wastewater. Different operational strategies were tested, including varying influent types, retention times, feeding strategies, and anaerobic/aerobic conditions in a novel mixed metabolic mode concept. The overall results show that regardless of the fermented wastewater fed (raw or after solid removal via dissolved air flotation) and the varying environmental conditions (e.g., light exposure and temperatures), the FPPBR provided effective volatile fatty acids (VFAs), N, and P removals (average efficiencies of >90%, 34-77%, and 28-45%, respectively). The removal of N and P was limited by the availability of biodegradable COD. Biomass (C, N and P) could be harvested at ∼90% VS/TS ratio, 58% crude protein content and a suitable amino acid profile for potential feed applications. During fully anaerobic operation with semicontinuous/day-only feeding, the FPPBR showed biomass productivities between 25 and 84 g VS m-2 d-1 (high due to solid influx; the productivities estimated from COD removal rates were 6.0-24 g VS•m-2•d-1 (conservative values)), and soluble COD removal rates of up to 1.0 g•L-1•d-1 (overall average of 0.34 ± 0.16 g•L-1•d-1). Under these conditions, the relative abundance of PPB in the harvested biomass was up to 56%. A minimum overall HRT of 2-2.4 d (1.0-1.2 d when only fed during the day) is recommended to avoid PPB washout, assuming no biomass retention. A combined daily-illuminated-anaerobic/night-aerobic operation (supplying air during night-time) exploiting photoheterotrophy during the day and aerobic chemoheterotrophy of the same bacteria at night improved the overall removal performance, avoiding VFA accumulation during the night. However, while enabling enhanced treatment, this resulted in a lower relative abundance of PPB and reduced biomass productivities, highlighting the need to balance resource recovery and treatment goals.


Subject(s)
Photobioreactors , Proteobacteria , Bacteria , Biomass , Bioreactors , Wastewater
2.
Water Res ; 40(14): 2765-75, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16815527

ABSTRACT

Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 kg [corrected] NH(4)(+)-N m(-3)d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2 g COD g(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation.


Subject(s)
Ammonia/metabolism , Bioreactors , Nitrogen/metabolism , Sewage , Biomass , Bioreactors/microbiology , Nitric Oxide/metabolism , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...