Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570049

ABSTRACT

The present study is aimed at unveiling the luminescence potential of Ba4-xSr3+x(BO3)4-yF2+3y (BSBF) crystals doped with Eu3+, Tb3+, and Ce3+. Owing to the incongruent melting character of the phase, the NaF compound was used as a solvent for BSBF crystal growth. The structure of BSBF: Eu3+ with Eu2O3 concentration of about 0.7(3) wt% was solved in the non-centrosymmetric point group P63mc. The presence of Eu2O3 in BSBF: Eu3+ leads to a shift of the absorption edge from 225 nm to 320 nm. The photoluminescence properties of the BSBF: Ce3+, BSBF: Tb3+, BSBF: Eu3+, and BSBF: Eu3+, Tb3+, Ce3+ crystals have been studied. The unusual feature of europium emission in BSBF is the intensively manifested 5D0→7F0 transition at about 574 nm, which is the strongest for BSBF: Eu3+ at 370 nm excitation and for BSBF: Eu3+, Tb3+, Ce3+ at 300 nm and 370 nm excitations. No evidence of Tb3+→Eu3+ energy transfer was found for BSBF: Eu3+, Tb3+, Ce3+. The PL spectra of BSBF: Eu3+ at 77 and 300 K are similar with CIE chromaticity coordinates of (0.617; 0.378) at 300 nm excitation and (0.634; 0.359) at 395 nm excitation and low correlated color temperature which implies application prospects in the field of lightning. Due to the high intensity of 5D0→7F0 Eu3+ transition at 370 nm excitation, the BSBF: Eu3+ emission is yellow-shifted.

2.
Inorg Chem ; 59(18): 13598-13606, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32877188

ABSTRACT

The porous Ba12(BO3)66+ framework of the so-called "antizeolite" borates with channels along the c axis is capable of accommodating various guest anionic groups, e.g. [BO3]3-, [F2]2-, [F4]4-, and [(Li,Na)F4]3-. Taking as an example the Ba12(BO3)6[BO3][LiF4] crystal, we put forward the argument that the optical properties of "antizeolite" borates are strongly influenced by the degree of channel packing with anionic groups and, correspondingly, by the conjugated intrinsic defects. With the use of optical, electron-spin resonance, Raman spectroscopy, and ab initio calculations, it was shown that intrinsic defects largely impact the absorption of light in the visible and UV regions (the color of the bulk crystals can change from colorless to dark brown), absorption-edge position, dichroism, and other optical properties. The change in the optical absorption in the visible range is caused by the appearance of new states in the electronic structure inside the band gap, which are associated mainly with the presence of single and double F centers-fluorine vacancies that capture electrons-in [□F4]4-, [F2]2-, and [LiF4]3- groups. The formation of F centers in the [F2]2- group is the most energetically favorable. It has been found that Ba12(BO3)6[BO3][LiF4] crystals are optically active gyrotropic with an isotropic point at 499 nm at 300 K and are of interest for practical application as narrow-band light filters.

3.
Inorg Chem ; 57(5): 2744-2751, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29457896

ABSTRACT

Crystals of the Mn xBa12(BO3)8-2 xF8 x phase were grown from a high-temperature solution. This new fluoride borate is built of positively charged [Ba12(BO3)6]6+ blocks, the so-called "anti-zeolite" pattern. Using X-ray single-crystal diffraction, the bulk atomic arrangement in the centrosymmetric tetragonal unit cell in I4/ mcm could be elucidated. Crystals of the (MnF6)4- group-containing solid solution Mn xBa12(BO3)8-2 xF8 x are dark brown in color in contrast to the differently colored crystals of (LiF4)3- group-containing "anti-zeolite" LiBa12(BO3)7F4 ( P42 bc). According to the electron spin resonance and optical spectroscopic investigation, the absorption spectrum of LiBa12(BO3)7F4 crystals results from the absorption of light by both exciton and free charge carriers and can be tuned by varying the initial composition of the high-temperature solution.

4.
Inorg Chem ; 56(9): 5411-5419, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28394588

ABSTRACT

Studied LixNa1-xBa12(BO3)7F4 (P42bc) solid solution belongs to the new class of "antizeolite" borates with [Ba12(BO3)6]6+ cation pattern, which contains channels filled by anionic clusters. Optical-quality crystals were grown from the compositions with different sodium-lithium ratio. The results of Rietveld refinement based on powder data demonstrate linear increase of parameter a and unit cell volume with Na/(Na + Li) ratio in cation site. Parameter c is less sensitive to the changes in stoichiometry, which is consistent with channel topology of LixNa1-xBa12(BO3)7F4 structure. Distinctive feature of LixNa1-xBa12(BO3)7F4 crystals is their deep purple color, which is due to both hole-type and electron-type centers. Crystals are characterized by linear dichroism effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...