Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 185(1): 79-88, 2019 04.
Article in English | MEDLINE | ID: mdl-30681722

ABSTRACT

Loss of B cell-specific transcription factors (TFs) and the resulting loss of B-cell phenotype of Hodgkin and Reed-Sternberg (HRS) cells is a hallmark of classical Hodgkin lymphoma (cHL). Here we have analysed two members of ETS domain containing TFs, ELF1 and ELF2, regarding (epi)genomic changes as well as gene and protein expression. We observed absence or lower levels of ELF1 protein in HRS cells of 31/35 (89%) cases compared to the bystander cells and significant (P < 0·01) downregulation of the gene on mRNA as well as protein level in cHL compared to non-cHL cell lines. However, no recurrent loss of ELF2 protein was observed. Moreover, ELF1 was targeted by heterozygous deletions combined with hypermethylation of the remaining allele(s) in 4/7 (57%) cell lines. Indeed, DNA hypermethylation (range 95-99%, mean 98%) detected in the vicinity of the ELF1 transcription start site was found in all 7/7 (100%) cHL cell lines. Similarly, 5/18 (28%) analysed primary biopsies carried heterozygous deletions of the gene. We demonstrate that expression of ELF1 is impaired in cHL through genetic and epigenetic alterations, and thus, it may represent an additional member of a TF network whose downregulation contributes to the loss of B-cell phenotype of HRS cells.


Subject(s)
ETS Motif , Gene Deletion , Hodgkin Disease/diagnosis , Hodgkin Disease/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Biopsy , Cell Line, Tumor , DNA Methylation , ETS Motif/genetics , Heterozygote , Hodgkin Disease/metabolism , Humans , Immunohistochemistry , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
2.
Mol Carcinog ; 57(7): 878-885, 2018 07.
Article in English | MEDLINE | ID: mdl-29566279

ABSTRACT

Protocadherins are cell-cell adhesion molecules encoded by a large family of genes. Recent reports demonstrate recurrent silencing of protocadherin genes in tumors and provide strong arguments for their tumor supresor functionality. Loss of protocadherins may contribute to cancer development not only by altering cell-cell adhesion, that is a hallmark of cancer, but also by enhancing proliferation and epithelial mesenchymal transition of cells via deregulation of the WNT signaling pathway. In this study we have further corroborated our previous findings on the involvement of PCDH17 in laryngeal squamous cell carcinoma (LSCC). We used bisulfite pyrosequencing to analyze a cohort of primary LSCC tumors for alterations in PCDH17 promoter DNA methylation as an alternative gene inactivation mechanism to the homozygous deletions reported earlier. Moreover, we analyzed primary LSCC samples by immunohistochemistry for PCDH17 protein loss. We identified recurrent elevation of PCDH17 promoter DNA methylation in 32/81 (40%) primary tumors (P < 0.001) and therein hypermethylation of 12 (15%) cases in contrast to no tumor controls (n = 24) that were all unmethylated. Importantly, DNA demethylation by decitabine has restored low level PCDH17 expression in LSCC cell lines. In conclusion, we provide a mechanistic explanation of recurrently observed PCDH17 silencing in LSCC by demonstrating the role of promoter methylation in this process. In light of these findings and recent reports showing that PCDH17 methylation is detectable in serum of cancer patients we suggest that testing PCDH17 DNA methylation might serve as a potential biomarker in LSCC.


Subject(s)
Cadherins/genetics , Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , Laryngeal Neoplasms/genetics , Transcription, Genetic/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...