Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 17786, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273026

ABSTRACT

Three-dimensional reconstruction of the analysed volume is one of the main goals of atom probe tomography (APT) and can deliver nearly atomic resolution (~ 0.2 nm spatial resolution) and chemical information with a mass sensitivity down to the ppm range. Extending this technique to frozen biological systems would have an enormous impact on the structural analysis of biomolecules. In previous works, we have shown that it is possible to measure frozen liquids with APT. In this paper, we demonstrate the ability of APT to trace nanoscale precipitation in frozen natural honey. While the mass signals of the common sugar fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved correct stoichiometric values via different interpretation approaches for the peaks and thus determined the water content reliably. Next, we use honey to investigate the spatial resolution capabilities as a step toward the measurement of biological molecules in solution in 3D with sub-nanometer resolution. This may take analytical techniques to a new level, since methods of chemical characterization for cryogenic samples, especially biological samples, are still limited.


Subject(s)
Honey , Tomography/methods , Water/chemistry , Sugars
2.
Microsc Microanal ; : 1-13, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039107

ABSTRACT

Atomic probe tomography (APT) is able to generate three-dimensional chemical maps in atomic resolution. The required instruments for APT have evolved over the last 20 years from an experimental to an established method of materials analysis. Here, we describe the realization of a new modular instrument concept that allows the direct attachment of APT to a dual-beam SEM microscope with the main achievement of fast and direct sample transfer and high flexibility in chamber and component configuration. New operational modes are enabled regarding sample geometry, alignment of tips, and the microelectrode. The instrument is optimized to handle cryo-samples at all stages of preparation and storage. It comes with its own software for evaluation and reconstruction. The performance in terms of mass resolution, aperture angle, and detection efficiency is demonstrated with a few application examples.

3.
Microsc Microanal ; : 1-10, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34490841

ABSTRACT

Atom probe tomography measurements of self-assembled monolayers of 1-octadecanethiol on platinum tips were performed and their fragmentation behavior under the influence of different laser powers was investigated. The carbon backbone evaporates in the form of small hydrocarbon fragments consisting of one to four carbon atoms, while sulfur evaporates exclusively as single ions. The carbon molecules evaporate at very low fields of 5.9 V/nm, while S requires a considerably higher evaporation field of 23.4 V/nm. With increasing laser power, a weak, but noticeable trend toward larger fragment sizes is observed. No hydrocarbon fragments containing S are detected, indicating that a strong S­Pt bond has formed. The observed surface coverage of S fits well with literature values and is higher for (111)-oriented samples than for (200).

4.
Sci Rep ; 11(1): 6382, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33737629

ABSTRACT

A critical requirement for the application of organic thin-film transistors (TFTs) in mobile or wearable applications is low-voltage operation, which can be achieved by employing ultrathin, high-capacitance gate dielectrics. One option is a hybrid dielectric composed of a thin film of aluminum oxide and a molecular self-assembled monolayer in which the aluminum oxide is formed by exposure of the surface of the aluminum gate electrode to a radio-frequency-generated oxygen plasma. This work investigates how the properties of such dielectrics are affected by the plasma power and the duration of the plasma exposure. For various combinations of plasma power and duration, the thickness and the capacitance of the dielectrics, the leakage-current density through the dielectrics, and the current-voltage characteristics of organic TFTs in which these dielectrics serve as the gate insulator have been evaluated. The influence of the plasma parameters on the surface properties of the dielectrics, the thin-film morphology of the vacuum-deposited organic-semiconductor films, and the resulting TFT characteristics has also been investigated.

5.
J Phys Chem A ; 124(41): 8633-8642, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32946231

ABSTRACT

Atom probe tomography allows us to measure the three-dimensional composition of materials with up to atomic resolution by evaporating the material using high electric fields. Initially developed for metals, it is increasingly used for covalently bound structures. To aid the interpretation of the obtained fragmentation pattern, we modeled the fragmentation and desorption of self-assembled monolayers of thiolate molecules on a gold surface in strong electrostatic fields using density functional theory. We used a cluster model and a periodic model of amino-undecanethiolate, NH2(CH2)11S, and fluoro-decanethiolate, CF3(CF2)7(CH2)2S. In the former molecule, the fragment CH2NH2+ was found to evaporate at fields of 5.4-7.7 V/nm. It was followed by different hydrocarbon fragments. Fluoro-decanethiolate evaporates CF3+ at fields of 5.7-6.7 V/nm in the cluster model and at 15.4-23.1 V/nm in the periodic model, followed by CF2+ and C2F42+. Detailed analysis of the electronic structure during the evaporation process revealed a stepwise accumulation of the charge in the head groups exposed to the strongest fields, followed by dissociation of covalent bonds. These observations will facilitate the analysis of atom probe experiments of covalently bound structures.

6.
Nanoscale ; 12(4): 2820-2832, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31961355

ABSTRACT

The high resolution nanoanalysis by atom probe tomography is based on needle-shaped samples that represent nanometric field emitters with typical curvature radii of 50 nm. After field desorption and detection of a large set of atoms, the sample volume has to be numerically reconstructed. Conventionally, this reconstruction is performed with the assumption of a hemispherical apex. This established practice can lead to serious distortions of the tomography. In this work, we demonstrate how the real shape of the emitter can be extracted from the event density on the 2D detector setup. Except for convexity, no other restriction is imposed on the shape. The required mathematics is derived and the method is demonstrated with numerically simulated and experimental data sets of complex tip shapes. The computational effort of the method is also suitable to handle data sets of a few hundred million atoms.

7.
Nanoscale Adv ; 2(12): 5710-5727, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-36133865

ABSTRACT

One-dimensional objects as nanowires have been proven to be building blocks in novel applications due to their unique functionalities. In the realm of magnetic materials, iron-oxides form an important class by providing potential solutions in catalysis, magnetic devices, drug delivery, or in the field of sensors. The accurate composition and spatial structure analysis are crucial to describe the mechanical aspects and optimize strategies for the design of multi-component NWs. Atom probe tomography offers a unique analytic characterization tool to map the (re-)distribution of the constituents leading to a deeper insight into NW growth, thermally-assisted kinetics, and related mechanisms. As NW-based devices critically rely on the mechanical properties of NWs, the appropriate mechanical modeling with the resulting material constants is also highly demanded and can open novel ways to potential applications. Here, we report a compositional and structural study of quasi-ceramic one-dimensional objects: α-Fe ⊕ α-FeOOH(goethite) ⊕ Pt and α-Fe ⊕ α-Fe3O4(magnetite) ⊕ Pt core-shell NWs. We provide a theoretical model for the elastic behavior with terms accounting for the geometrical and mechanical nonlinearity, prior and subsequent to thermal treatment. The as-deposited system with a homogeneous distribution of the constituents demonstrates strikingly different structural and elastic features than that of after annealing, as observed by applying atom probe tomography, energy-dispersive spectroscopy, analytic electron microscopy, and a micromanipulator nanoprobe system. During annealing at a temperature of 350 °C for 20 h, (i) compositional partitioning between phases (α-Fe, α-Fe3O4 and in a minority of α-Fe2O3) in diffusional solid-solid phase transformations takes place, (ii) a distinct newly-formed shell formation develops, (iii) the degree of crystallinity increases and (iv) nanosized precipitation of evolving phases is detected leading to a considerable change in the description of the elastic material properties. The as-deposited nanowires already exhibit a significantly large maximum strain (1-8%) and stress (3-13 GPa) in moderately large bending tests, which become even more enhanced after the annealing treatment resulting at a maximum of about 2.5-10.5% and 6-18 GPa, respectively. As a constitutive parameter, the strain-dependent stretch modulus undoubtedly represents changes in the material properties as the deformation progresses.

SELECTION OF CITATIONS
SEARCH DETAIL
...