Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(40): e2003352, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32893438

ABSTRACT

Dispersion of microparticles in nematic liquid crystals offers a novel means for controlling both their orientation and position through the combination of topology and external stimuli. Here, cuboidal and triangular prism shaped microparticles in parallel plate capacitor cells filled with a nematic liquid crystal are studied. Experimental observations are compared with numerical simulations to show that the optimal orientation of the particles is determined by their aspect rations, the relative separation gap of their containers and the applied voltage. It is observed that in systems that allow unrestricted particle rotation, the long axes of the particles are able to fully align themselves with the external electric field. However, when particle rotation is geometrically restricted, it is found that increasing the voltage past a critical value causes the short axis of the particle to realign with the electric field due to anchoring breaking. It is shown that symmetry of the particles then plays a key role in their dynamics following the removal of the electric field, allowing the triangular prisms to travel perpendicular to the applied electric field, whereas only rotation is possible for the cuboidal particles.

2.
Nat Commun ; 10(1): 198, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643151

ABSTRACT

Nematic liquid crystals are anisotropic fluids that self-assemble into vector fields, which are governed by geometrical and topological laws. Consequently, particulate or droplet inclusions self-assemble in nematic domains through a balance of topological defects. Here, we use double emulsions of water droplets inside radial nematic liquid crystal droplets to form various structures, ranging from linear chains to three-dimensional fractal structures. The system is modeled as a formation of satellite droplets, distributed around a larger, central core droplet and we extend the problem to explain the formation of fractal structures. We show that a distribution of droplet sizes plays a key role in determining the symmetry properties of the resulting geometric structures. The results are relevant to a variety of inclusions, ranging from colloids suspensions to multi-emulsion systems. Such systems have potential applications for novel switchable photonic structures as well as providing wider insights into the packing of self-assembled structures.

3.
Phys Rev E ; 97(4-1): 042702, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758680

ABSTRACT

Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...