Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38088779

ABSTRACT

The collective Thomson scattering of high-power millimeter-wave radiation on plasma density fluctuations (CTS) is widely used for diagnosing the velocity distribution function of energetic ions in fusion plasma. In this paper, we discuss a non-standard scheme of CTS measurements, which exploits strong refraction of probing and scattered microwave beams when reflecting from the cut-off layer in dense plasma. The scheme may be realized with the existing CTS diagnostic system at the Gas-Dynamic Trap (GDT) facility, a large open magnetic trap operating at Budker Institute (Novosibirsk, Russia). This requires a minor upgrade of the available hardware and essentially increases the range of plasma densities allowed for CTS measurements, as well as its sensitivity and spatial resolution. A detailed study of CTS efficiency for different geometries and plasma conditions at GDT is performed by means of an advanced numerical model that allows for an accurate description of non-Gaussian beam scattering in inhomogeneous plasma. To perform this task, we develop a quasi-optical theory of scattering, which itself may be of general interest.

2.
Phys Rev Lett ; 114(20): 205001, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047233

ABSTRACT

This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50 eV with the plasma density being 0.7×10^{19} m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW/54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.

3.
Materials (Basel) ; 8(12): 8452-8459, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-28793722

ABSTRACT

The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

4.
Rev Sci Instrum ; 82(6): 063509, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721693

ABSTRACT

At the TEXTOR tokamak in Jülich, Germany, a modular dispersion interferometer was installed and operated for the first time. Equipped with four lines of sight, the line-integrated density could be measured in parallel at different major radii with a resolution of better than 3 × 10(17) m(-2). This paper will describe the setup and show the first measurement results. Among others, it was possible to detect the evolution of a disruption with a time resolution of 4 µs. The movement of the runaway beam following the disruption could be resolved spatially and temporarily.

5.
Rev Sci Instrum ; 79(10): 10E708, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044526

ABSTRACT

The design and main characteristics of 14-channel dispersion interferometer for plasma profile measurement and control in TEXTOR tokamak are presented. The diagnostic is engineered on the basis of modular concept, the 10.6 microm CO(2) laser source and all optical and mechanical elements of each module are arranged in a compact housing. A set of mirrors and retroreflectors inside the TEXTOR vacuum vessel provides full coverage of the torus cross section with 12 vertical and two diagonal lines of sight, no rigid frame for vibration isolation is required. Results of testing of the single-channel prototype diagnostic and the pilot module of the multichannel dispersion interferometer are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...