Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(26): 29993-29999, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35647869

ABSTRACT

Schottky diodes based on inexpensive materials that can be processed using simple manufacturing methods are of particular importance for the next generation of flexible electronics. Although a number of high-frequency n-type diodes and rectifiers have been demonstrated, the progress with p-type diodes is lagging behind, mainly due to the intrinsically low conductivities of existing p-type semiconducting materials that are compatible with low-temperature, flexible, substrate-friendly processes. Herein, we report on CuSCN Schottky diodes, where the semiconductor is processed from solution, featuring coplanar Al-Au nanogap electrodes (<15 nm), patterned via adhesion lithography. The abundant CuSCN material is doped with the molecular p-type dopant fluorofullerene C60F48 to improve the diode's operating characteristics. Rectifier circuits fabricated with the doped CuSCN/C60F48 diodes exhibit a 30-fold increase in the cutoff frequency as compared to pristine CuSCN diodes (from 140 kHz to 4 MHz), while they are able to deliver output voltages of >100 mV for a VIN = ±5 V at the commercially relevant frequency of 13.56 MHz. The enhanced diode and circuit performance is attributed to the improved charge transport across CuSCN induced by C60F48. The ensuing diode technology can be used in flexible complementary circuits targeting low-energy-budget applications for the emerging internet of things device ecosystem.

2.
Adv Mater ; 34(22): e2108524, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34990058

ABSTRACT

The low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C16 IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied. Pristine C16 IDT-BT-based diodes exhibit maximum intrinsic and extrinsic cutoff frequencies (fC ) of >100 and 6 GHz, respectively. This extraordinary performance is attributed to the planar nature of the nanogap channel and the diode's small junction capacitance (<2 pF). Doping of C16 IDT-BT with the molecular p-dopant C60 F48 improves the diode's performance further by reducing the series resistance resulting to intrinsic and extrinsic fC of >100 and ≈14 GHz respectively, while the DC output voltage of an RF rectifier circuit increases by a tenfold. Our work highlights the importance of the planar nanogap architecture and paves the way for the use of organic Schottky diodes in large-area RF electronics of the future.

3.
ACS Appl Mater Interfaces ; 13(16): 18750-18757, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33855853

ABSTRACT

The efficiency of PbS quantum dot (QD) solar cells has significantly increased in recent years, strengthening their potential for industrial applications. The vast majority of state-of-the-art devices utilize 1,2-ethanedithiol (EDT)-coated PbS QD hole extraction layers, which lead to high initial performance, but result in poor device stability. While excellent performance has also been demonstrated with organic extraction layers, these devices include a molybdenum trioxide (MoO3) layer, which is also known to decrease device stability. Herein, we demonstrate that organic layers based on a poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) polymer doped with C60F48 can serve as hole extraction layers for efficient EDT-free and MoO3-free QD solar cells. Such layers are shown to offer high conductivity for facile hole transport to the anode, while effectively blocking electrons due to their low electron affinity. We show that our approach is versatile and is applicable also to AgBiS2 QD solar cells.

4.
ACS Appl Mater Interfaces ; 12(51): 57578-57586, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33290038

ABSTRACT

Two derivatives of [1]benzothieno[3,2-b][1]benzothiophene (BTBT), namely, 2,7-dioctyl-BTBT (C8-BTBT) and 2,7-diphenyl-BTBT (DPh-BTBT), belonging to one of the best performing organic semiconductor (OSC) families, have been employed to investigate the influence of the substitutional side groups on the properties of the interface created when they are in contact with dopant molecules. As a molecular p-dopant, the fluorinated fullerene C60F48 is used because of its adequate electronic levels and its bulky molecular structure. Despite the dissimilarity introduced by the OSC film termination, dopant thin films grown on top adopt the same (111)-oriented FCC crystalline structure in the two cases. However, the early stage distribution of the dopant on each OSC film surface is dramatically influenced by the group side, leading to distinct host-dopant interfacial morphologies that strongly affect the nanoscale local work function. In this context, Kelvin probe force microscopy and photoelectron emission spectroscopy provide a comprehensive picture of the interfacial electronic properties. The extent of charge transfer and energy level alignment between OSCs and dopant are debated in light of the differences in the ionization potential of the OSC in the films, the interface nanomorphology, and the electronic coupling with the substrate.

5.
ACS Appl Mater Interfaces ; 12(22): 25444-25452, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32388975

ABSTRACT

Establishing the rather complex correlation between the structure and the charge transfer in organic-organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details. Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes. As for Buckminsterfullerene (C60), the growth of its fluorinated derivative C60F48 is influenced by the thickness and crystallinity of the PEN buffer layer, but the behavior is markedly different. We provide a microscopic description of the C60F48/PEN interface formation and analyze the consequences in the electronic properties of the final heterostructure. For just one single layer of PEN, a laterally complete but noncompact C60F48/PEN interface is created, importantly affecting the surface work function. Nonetheless, from the very beginning of the second layer formation, the presence of epitaxial and nonepitaxial PEN domains dramatically influences the growth dynamics and extremely well packed two-dimensional C60F48 islands develop. Insightful elemental maps of the C60F48/PEN surface spatially resolve the nonuniform distribution of the dopant molecules, which leads to a heterogeneous work function landscape.

6.
ACS Appl Mater Interfaces ; 12(25): 28416-28425, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32460481

ABSTRACT

The present work assesses improved carrier injection in organic field-effect transistors by contact doping and provides fundamental insight into the multiple impacts that the dopant/semiconductor interface details have on the long-term and thermal stability of devices. We investigate donor [1]benzothieno[3,2-b]-[1]benzothiophene (BTBT) derivatives with one and two octyl side chains attached to the core, therefore constituting asymmetric (BTBT-C8) and symmetric (C8-BTBT-C8) molecules, respectively. Our results reveal that films formed out of the asymmetric BTBT-C8 expose the same alkyl-terminated surface as the C8-BTBT-C8 films do. In both cases, the consequence of depositing fluorinated fullerene (C60F48) as a molecular p-dopant is the formation of C60F48 crystalline islands decorating the step edges of the underlying semiconductor film surface. We demonstrate that local work function changes along with a peculiar nanomorphology lead to the double beneficial effect of lowering the contact resistance and providing long-term and enhanced thermal stability of the devices.

7.
Nanoscale Adv ; 2(10): 4529-4538, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132938

ABSTRACT

We provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of C60F48 depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C60. Though fluorine-metal bonding can be detected depending on the molecular surface density, no ordered fluorine structures are observed. We show the implications of the metal-dependent de-fluorination in the electronic structure of the molecules and the energy alignment at the molecule-metal interface. Molecular dynamics simulations with ReaxFF reactive force field corroborate the experimental facts and provide a detailed mechanistic picture of the surface-induced de-fluorination, which involves the rotation of the molecule on the surface. Outstandingly, a thermodynamic analysis indicates that the effect of the metal surface is lowering and diminishing the energy barrier for C-F cleave, demonstrating the catalytic role of the surface. The present study contributes to in-depth knowledge of the mechanisms that affect the degree of stability of chemical species on surfaces, which is essential to advance our understanding of the chemical reactivity of metals and their role in on-surface chemical reactions.

8.
Adv Mater ; 28(35): 7791-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27374749

ABSTRACT

A ternary organic semiconducting blend composed of a small-molecule, a conjugated polymer, and a molecular p-dopant is developed and used in solution-processed organic transistors with hole mobility exceeding 13 cm(2) V(-1) s(-1) (see the Figure). It is shown that key to this development is the incorporation of the p-dopant and the formation of a vertically phase-separated film microstructure.

9.
ACS Nano ; 6(4): 3128-33, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22390408

ABSTRACT

We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...