Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 30(2): 331-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26310541

ABSTRACT

It is unknown whether individuals with monoclonal B-cell lymphocytosis (MBL) are at risk for adverse outcomes associated with chronic lymphocytic leukemia (CLL), such as the risk of non-hematologic cancer. We identified all locally residing individuals diagnosed with high-count MBL at Mayo Clinic between 1999 and 2009 and compared their rates of non-hematologic cancer with that of patients with CLL and two control cohorts: general medicine patients and patients who underwent clinical evaluation with flow cytometry but who had no hematologic malignancy. After excluding individuals with prior cancers, there were 107 high-count MBL cases, 132 CLL cases, 589 clinic controls and 482 flow cytometry controls. With 4.6 years median follow-up, 14 (13%) individuals with high-count MBL, 21 (4%) clinic controls (comparison MBL P<0.0001), 18 (4%) flow controls (comparison MBL P=0.0001) and 16 (12%) CLL patients (comparison MBL P=0.82) developed non-hematologic cancer. On multivariable Cox regression analysis, individuals with high-count MBL had higher risk of non-hematologic cancer compared with flow controls (hazard ratio (HR)=2.36; P=0.04) and borderline higher risk compared with clinic controls (HR=2.00; P=0.07). Patients with high-count MBL appear to be at increased risk for non-hematologic cancer, further reinforcing that high-count MBL has a distinct clinical phenotype despite low risk of progression to CLL.


Subject(s)
B-Lymphocytes , Lymphocytosis/complications , Neoplasms/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Middle Aged , Proportional Hazards Models , Risk
2.
Biochemistry ; 29(31): 7303-9, 1990 Aug 07.
Article in English | MEDLINE | ID: mdl-1698455

ABSTRACT

Limited proteolysis of carboxypeptidase A from bovine pancreas with subtilisin Carlsberg generates a stable intermediate, carboxypeptidase S, whose esterase and peptidase activities are increased and decreased, respectively, under standard assay conditions. Carboxypeptidase S was isolated by affinity chromatography. Sequence analysis shows that it is cleaved solely at the Ala154-Gly155 bond. Its enzymatic properties were determined under stopped-flow conditions with Dns-Gly-Ala-Phe and its ester analogue Dns-Gly-Ala-OPhe. For both substrates, the Km values are increased 30-40-fold. The kcat value for peptide hydrolysis is virtually unaffected whereas that for ester hydrolysis is increased 10-fold. The magnitude of the Km effect is equivalent to a loss of 9 kJ/mol of binding energy and likely reflects a disruption of the network of hydrogen bonds that links Tyr-248 and Arg-145 to the backbone carbonyls of Ala-154 and Gly-155. The difference in kcat effects for the two substrate classes is related to differences in the chemical nature of the rate-determining step. Product release is rate determining for catalytic hydrolysis of ester substrates, and hence, the increase in kcat indicates that dissociation of products is facilitated as a result of the Ala154-Gly155 bond scission. The changes in enzymatic activity accompanying limited proteolysis are due to conformational alterations in the vicinity of the active center of the molecule. The affinity of a monoclonal antibody, mAb 100, directed toward the antigenic determinant located between residues 209 and 218 in carboxypeptidase A is diminished considerably for carboxypeptidase S.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Carboxypeptidases/metabolism , Saccharomyces cerevisiae Proteins , Subtilisins/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Carboxypeptidases/immunology , Carboxypeptidases/isolation & purification , Carboxypeptidases A , Catalysis , Cattle , Chromatography, Affinity , Epitopes/immunology , Esters/metabolism , Hydrogen Bonding , Isoenzymes/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Peptides/metabolism , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...