Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(48): 18489-18501, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36421057

ABSTRACT

The optoelectronic features of 3-hydroxyflavone (3HF) self-assembled on the surface of an n-type semiconducting metal oxide (TiO2) and an insulator (Al2O3) are herein investigated. 3HF molecules use the coordinatively unsaturated metal ions present on the oxide surface to form metal complexes, which exhibit different behaviors upon light irradiation, depending on the nature of the metal ion. Specifically, we show that the photoluminescence of the surface species can be modulated according to the chemical properties of the complex (i.e. the binding metal ion), resulting in solid-state emitters in a high quantum yield (about 15%). Furthermore, photoinduced charge injection can be promoted or inhibited, providing a multifunctional hybrid system.


Subject(s)
Electrons , Oxides , Titanium , Chelating Agents , Metals/chemistry , Ions
2.
ACS Appl Mater Interfaces ; 11(25): 22380-22389, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31145582

ABSTRACT

Hydrogen evolution reaction through electrolysis holds great potential as a clean, renewable, and sustainable energy source. Platinum-based catalysts are the most efficient to catalyze and convert water into molecular hydrogen; however, their large-scale application is prevented by scarcity and cost of Pt. In this work, we propose a new ternary composite of Ag2S, MoS2, and reduced graphene oxide (RGO) flakes via a one-pot synthesis. The RGO support assists the growth of two-dimensional MoS2 nanosheets partially covered by silver sulfides as revealed by high-resolution transmission electron microscopy. Compared with the bare MoS2 and MoS2/RGO, the Ag2S/MoS2 anchored on the RGO surface (the ternary system Ag2S/MoS2/RGO) demonstrated a high catalytic activity toward hydrogen evolution reaction (HER). Its superior electrochemical activity toward HER is evidenced by the positively shifted (-190 mV vs reversible hydrogen electrode (RHE)) overpotential at a current density of -10 mA/cm2 and a small Tafel slope (56 mV/dec) compared with a bare and binary system. The Ag2S/MoS2/RGO ternary catalyst at an overpotential of -200 mV demonstrated a turnover frequency equal to 0.38 s-1. Electrochemical impedance spectroscopy was applied to understand the charge-transfer resistance; the ternary sample shows a very small charge-transfer resistance (98 Ω) at -155 mV vs RHE. Such a large improvement can be attributed to the synergistic effect resulting from the enhanced active site density of both sulfides and to the improved electrical conductivity at the interfaces between MoS2 and Ag2S. This ternary catalyst opens up further optimization strategies to design a stable and cheap catalyst for hydrogen evolution reaction, which holds great promise for the development of a clean energy landscape.

SELECTION OF CITATIONS
SEARCH DETAIL
...