Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Phys Med ; 122: 103382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820805

ABSTRACT

PURPOSE: In this work, we define a signal detection based metrology to characterize the separability of two different multi-dimensional signals in spectral CT acquisitions. METHOD: Signal response was modelled as a random process with a deterministic signal and stochastic noise component. A linear Hotelling observer was used to estimate a scalar test statistic distribution that predicts the likelihood of an intensity value belonging to a signal. Two distributions were estimated for two materials of interest and used to derive two metrics separability: a separability index (s') and the area under the curve of the test statistic distributions. Experimental and simulated data of photon-counting CT scanners were used to evaluate each metric. Experimentally, vials of iodine and gadolinium (2, 4, 8 mg/mL) were scanned at multiple tube voltages, tube currents and energy thresholds. Additionally, a simulated dataset with low tube current (10-150 mAs) and material concentrations (0.25-4 mg/mL) was generated. RESULTS: Experimental data showed that conditions favorable for low noise and expression of k-edge signal produced the highest separability. Material concentration had the greatest impact on separability. The simulated data showed that under more difficult separation conditions, difference in material concentration still had the greatest impact on separability. CONCLUSION: The results demonstrate the utility of a task specific metrology to measure the overlap in signal between different materials in spectral CT. Using experimental and simulated data, the separability index was shown to describe the relationship between image formation factors and the signal responses of material.


Subject(s)
Tomography, X-Ray Computed , Iodine , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Gadolinium/chemistry , Phantoms, Imaging
2.
Eur Radiol ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870625

ABSTRACT

OBJECTIVES: The purpose of this study was to determine the influence of dose reduction on a commercially available lung cancer prediction convolutional neuronal network (LCP-CNN). METHODS: CT scans from a cohort provided by the local lung cancer center (n = 218) with confirmed pulmonary malignancies and their corresponding reduced dose simulations (25% and 5% dose) were subjected to the LCP-CNN. The resulting LCP scores (scale 1-10, increasing malignancy risk) and the proportion of correctly classified nodules were compared. The cohort was divided into a low-, medium-, and high-risk group based on the respective LCP scores; shifts between the groups were studied to evaluate the potential impact on nodule management. Two different malignancy risk score thresholds were analyzed: a higher threshold of ≥ 9 ("rule-in" approach) and a lower threshold of > 4 ("rule-out" approach). RESULTS: In total, 169 patients with 196 nodules could be included (mean age ± SD, 64.5 ± 9.2 year; 49% females). Mean LCP scores for original, 25% and 5% dose levels were 8.5 ± 1.7, 8.4 ± 1.7 (p > 0.05 vs. original dose) and 8.2 ± 1.9 (p < 0.05 vs. original dose), respectively. The proportion of correctly classified nodules with the "rule-in" approach decreased with simulated dose reduction from 58.2 to 56.1% (p = 0.34) and to 52.0% for the respective dose levels (p = 0.01). For the "rule-out" approach the respective values were 95.9%, 96.4%, and 94.4% (p = 0.12). When reducing the original dose to 25%/5%, eight/twenty-two nodules shifted to a lower, five/seven nodules to a higher malignancy risk group. CONCLUSION: CT dose reduction may affect the analyzed LCP-CNN regarding the classification of pulmonary malignancies and potentially alter pulmonary nodule management. CLINICAL RELEVANCE STATEMENT: Utilization of a "rule-out" approach with a lower malignancy risk threshold prevents underestimation of the nodule malignancy risk for the analyzed software, especially in high-risk cohorts. KEY POINTS: • LCP-CNN may be affected by CT image parameters such as noise resulting from low-dose CT acquisitions. • CT dose reduction can alter pulmonary nodule management recommendations by affecting the outcome of the LCP-CNN. • Utilization of a lower malignancy risk threshold prevents underestimation of pulmonary malignancies in high-risk cohorts.

3.
Microbiol Resour Announc ; 12(10): e0069923, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37750701

ABSTRACT

The temperate Gordonia phage Nebulosus was isolated from soil on Gordonia terrae and is a siphovirus. The genome is 52,175 bp in length, has 62% GC content, and encodes 96 protein-coding genes. Nebulosus encodes a partitioning system, ParABS, which is likely involved in lysogeny maintenance.

4.
J Comput Assist Tomogr ; 47(4): 613-620, 2023.
Article in English | MEDLINE | ID: mdl-37380149

ABSTRACT

ABSTRACT: Photon-counting computed tomography (PCCT) offers better high-resolution and noise performance than energy integrating detector (EID) CT. In this work, we compared both technologies for imaging of the temporal bone and skull base. A clinical PCCT system and 3 clinical EID CT scanners were used to image the American College of Radiology image quality phantom using a clinical imaging protocol with matched CTDI vol (CT dose index-volume) of 25 mGy. Images were used to characterize the image quality of each system across a series of high-resolution reconstruction options. Noise was calculated from the noise power spectrum, whereas resolution was quantified with a bone insert by calculating a task transfer function. Images of an anthropomorphic skull phantom and 2 patient cases were examined for visualization of small anatomical structures. Across measured conditions, PCCT had a comparable or smaller average noise magnitude (120 Hounsfield units [HU]) to the EID systems (144-326 HU). Photon-counting CT also had comparable resolution (task transfer function f25 : 1.60 mm -1 ) to the EID systems (1.34-1.77 mm -1 ). Imaging results supported quantitative findings as PCCT more clearly showed the 12-lp/cm bars from the fourth section of the American College of Radiology phantom and better represented the vestibular aqueduct and oval and round windows when compared with the EID scanners. A clinical PCCT system was able to image the temporal bone and skull base with improved spatial resolution and lower noise than clinical EID CT systems at matched dose.


Subject(s)
Head , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Phantoms, Imaging , Skull Base/diagnostic imaging , Photons
5.
J Med Educ Curric Dev ; 10: 23821205231182043, 2023.
Article in English | MEDLINE | ID: mdl-37347051

ABSTRACT

Objectives: Engagement in research activities is a critical component of clinical residency training. It is vital to build research capacity of residents to help interpret evidence-based medicine and design quality improvement projects. A mixed methods study was conducted to assess the impact of a 1-day research training workshop conducted at Eastern Idaho Regional Medical Centre, Idaho in May 2022. The workshop was targeted to improve the research knowledge of current clinical residents of Internal Medicine and Family Medicine. Methods: Workshop comprised of expert presentations, with assessment of difference in knowledge with a pretest and post-test. The sessions were organized around the core competencies of Institute of Medicine. Suggestions were also gathered from the audience. A pretest and post-test based on 13 questions was administered to the participants to assess change in research-related knowledge. Comments and suggestions of the participants were also recorded. Wilcoxon rank test was applied to determine statistical difference across each question and cumulative knowledge score. Conventional content analysis was applied to explore the comments and feedback. Results: The mean score of participants improved across all 12 questions. Statistically significant results were observed for the questions about types of studies qualifying as qualitative research. The cumulative score of participants increased in the post-test from 8.57 to 9.35. The participants gained new knowledge (94.3%), and felt more comfortable in application of research methods (74.3%). Encouraging feedback was obtained from the audience. They stated that they had benefited from the workshop and felt more prepared and motivated to indulge in scholarly activities. Conclusion: The study shows improvement in research-related knowledge of clinical residents attending a 1-day training workshop. We recommend inclusion of such workshops in the curriculum of residents for skill building and enhanced indulgence in research activities in order to prepare them as future leaders in quality improvement, health policy, and hospital administration.

6.
Tomography ; 9(2): 798-809, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37104136

ABSTRACT

Due to the concerns about radiation dose associated with medical imaging, radiation dose monitoring systems (RDMSs) are now utilized by many radiology providers to collect, process, analyze, and manage radiation dose-related information. Currently, most commercially available RDMSs focus only on radiation dose information and do not track any metrics related to image quality. However, to enable comprehensive patient-based imaging optimization, it is equally important to monitor image quality as well. This article describes how RDMS design can be extended beyond radiation dose to simultaneously monitor image quality. A newly designed interface was evaluated by different groups of radiology professionals (radiologists, technologists, and physicists) on a Likert scale. The results show that the new design is effective in assessing both image quality and safety in clinical practices, with an overall average score of 7.8 out of 10.0 and scores ranging from 5.5 to 10.0. Radiologists rated the interface highest at 8.4 out of 10.0, followed by technologists at 7.6 out of 10.0, and medical physicists at 7.5 out of 10.0. This work demonstrates how the assessment of the radiation dose can be performed in conjunction with the image quality using customizable user interfaces based on the clinical needs associated with different radiology professions.


Subject(s)
Radiology , Humans , Radiation Dosage , Tomography, X-Ray Computed/methods
7.
Eur Radiol ; 33(3): 1629-1640, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36323984

ABSTRACT

OBJECTIVES: To compare the image quality and hepatic metastasis detection of low-dose deep learning image reconstruction (DLIR) with full-dose filtered back projection (FBP)/iterative reconstruction (IR). METHODS: A contrast-detail phantom consisting of low-contrast objects was scanned at five CT dose index levels (10, 6, 3, 2, and 1 mGy). A total of 154 participants with 305 hepatic lesions who underwent abdominal CT were enrolled in a prospective non-inferiority trial with a three-arm design based on phantom results. Data sets with full dosage (13.6 mGy) and low dosages (9.5, 6.8, or 4.1 mGy) were acquired from two consecutive portal venous acquisitions, respectively. All images were reconstructed with FBP (reference), IR (control), and DLIR (test). Eleven readers evaluated phantom data sets for object detectability using a two-alternative forced-choice approach. Non-inferiority analyses were performed to interpret the differences in image quality and metastasis detection of low-dose DLIR relative to full-dose FBP/IR. RESULTS: The phantom experiment showed the dose reduction potential from DLIR was up to 57% based on the reference FBP dose index. Radiation decreases of 30% and 50% resulted in non-inferior image quality and hepatic metastasis detection with DLIR compared to full-dose FBP/IR. Radiation reduction of 70% by DLIR performed inferiorly in detecting small metastases (< 1 cm) compared to full-dose FBP (difference: -0.112; 95% confidence interval [CI]: -0.178 to 0.047) and full-dose IR (difference: -0.123; 95% CI: -0.182 to 0.053) (p < 0.001). CONCLUSION: DLIR enables a 50% dose reduction for detecting low-contrast hepatic metastases while maintaining comparable image quality to full-dose FBP and IR. KEY POINTS: • Non-inferiority study showed that deep learning image reconstruction (DLIR) can reduce the dose to oncological patients with low-contrast lesions without compromising the diagnostic information. • Radiation dose levels for DLIR can be reduced to 50% of full-dose FBP and IR for detecting low-contrast hepatic metastases, while maintaining comparable image quality. • The reduction of radiation by 70% by DLIR is clinically acceptable but insufficient for detecting small low-contrast hepatic metastases (< 1 cm).


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Algorithms , Image Processing, Computer-Assisted , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Phantoms, Imaging , Prospective Studies , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
8.
J Bone Joint Surg Am ; 104(11): 1004-1014, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35648067

ABSTRACT

BACKGROUND: Shoulder computed tomography (CT) is commonly utilized in preoperative planning for total shoulder arthroplasty. Conventional-dose shoulder CT may expose patients to more ionizing radiation than is necessary to provide high-quality images for this procedure. The purpose of this study was to evaluate the utility of simulated low-dose CT images for preoperative planning using manual measurements and common preoperative planning software. METHODS: Eighteen shoulder CT scans obtained for preoperative arthroplasty planning were used to generate CT images as if they had been acquired at reduced radiation dose (RD) levels of 75%, 50%, and 25% using a simulation technique that mimics decreased x-ray tube current. This technique was validated by quantitative comparison of simulated low-dose scans of a cadaver with actual low-dose scans. Glenoid version, glenoid inclination, and humeral head subluxation were measured using 2 commercially available software platforms and were also measured manually by 3 physicians. These measurements were then analyzed for agreement across RD levels for each patient. Tolerances of 5° of glenoid version, 5° of glenoid inclination, and 10% humeral head subluxation were used as equivalent for preoperative planning purposes. RESULTS: At all RD levels evaluated, the preoperative planning software successfully segmented the CT images. Semiautomated software measurement of 25% RD images was within tolerances in 99.1% of measurements; for 50% RD images, within tolerances in 96.3% of measurements; and for 75% RD images, within tolerances in 100% of measurements. Manual measurements of 25% RD images were within these tolerances in 95.1% of measurements; for 50% RD images, in 98.8% of measurements; and for 75% RD images, in 99.4% of measurements. CONCLUSIONS: Simulated low-dose CT images were sufficient for reliable measurement of glenoid version, glenoid inclination, and humeral head subluxation by preoperative planning software as well as by physician-observers. These findings suggest the potential for substantial reduction in RD in preoperative shoulder CT scans without compromising surgical planning. CLINICAL RELEVANCE: The adoption of low-dose techniques in preoperative shoulder CT may lower radiation exposure for patients undergoing shoulder arthroplasty, without compromising image quality.


Subject(s)
Arthroplasty, Replacement, Shoulder , Joint Dislocations , Shoulder Joint , Humans , Imaging, Three-Dimensional , Joint Dislocations/surgery , Scapula/surgery , Shoulder Joint/diagnostic imaging , Shoulder Joint/surgery , Tomography, X-Ray Computed/methods
9.
Acad Radiol ; 29(4): e61-e72, 2022 04.
Article in English | MEDLINE | ID: mdl-34130922

ABSTRACT

RATIONALE AND OBJECTIVES: The accuracy of measured radiomics features is affected by CT imaging protocols. This study aims to ascertain if applying bias corrections can improve the classification performance of the radiomics features. MATERIALS AND METHODS: A cohort of 144 Non-Small Cell Lung Cancer patient CT images was used to calculate radiomics features for use in predictive models of patient pathological stage. Simulation models of the tumors, matched to patient lesion qualities of size, contrast, and degree of spiculation, were used to both create and assess protocol-specific correction factors. The usefulness of correction was first assessed by applying the corrections to simulated lesion phantoms with known properties using a corrected paired Student's t-test. The sensitivity of radiomics features to correction factors was assessed by applying a library of possible theoretical correction factors to the uncorrected radiomics from the patient data. The data were then used to assess the effect of the correction on prediction performance (AUC) from a logistic regression radiomics model across the patient cases. RESULTS: The correction factors were shown to reduce the bias of radiomics features, caused by protocols, provided that the correction factors were derived from lesion models with similar properties. The sensitivity of the radiomics features to changes due to protocol effects was on average 89% among all features. The corrections applied to patient data resulted in a small increase of 0.0074 in AUC that was not statistically significant (p=0.60). CONCLUSION: Protocol-specific correction factors can be applied to radiomics studies to control for biases introduced by different imaging protocols. The correction factors should ideally be lesion-specific, derived using lesion models that echo patient lesion characteristics in terms of size, contrast, and degree of spiculation. Small corrections in the 10% range offers only a small improvement in the predictability of radiomics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Bias , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods
10.
IEEE Trans Med Imaging ; 41(4): 925-936, 2022 04.
Article in English | MEDLINE | ID: mdl-34784274

ABSTRACT

We present a volumetric mesh-based algorithm for parameterizing the placenta to a flattened template to enable effective visualization of local anatomy and function. MRI shows potential as a research tool as it provides signals directly related to placental function. However, due to the curved and highly variable in vivo shape of the placenta, interpreting and visualizing these images is difficult. We address interpretation challenges by mapping the placenta so that it resembles the familiar ex vivo shape. We formulate the parameterization as an optimization problem for mapping the placental shape represented by a volumetric mesh to a flattened template. We employ the symmetric Dirichlet energy to control local distortion throughout the volume. Local injectivity in the mapping is enforced by a constrained line search during the gradient descent optimization. We validate our method using a research study of 111 placental shapes extracted from BOLD MRI images. Our mapping achieves sub-voxel accuracy in matching the template while maintaining low distortion throughout the volume. We demonstrate how the resulting flattening of the placenta improves visualization of anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening.


Subject(s)
Magnetic Resonance Imaging , Placenta , Algorithms , Female , Humans , Magnetic Resonance Imaging/methods , Pelvis , Placenta/diagnostic imaging , Pregnancy
11.
J Med Imaging (Bellingham) ; 8(5): 052113, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34712744

ABSTRACT

Purpose: Developing, validating, and evaluating a method for measuring noise texture directly from patient liver CT images (i.e., in vivo). Approach: The method identifies target regions within patient scans that are least likely to have major contribution of patient anatomy, detrends them locally, and measures noise power spectrum (NPS) there using a previously phantom-validated technique targeting perceptual noise-non-anatomical fluctuations in the image that may interfere with the detection of focal lesions. Method development and validation used scanner-specific CT simulations of computational, anthropomorphic phantom (XCAT phantom, three phases of contrast-enhancement) with known ground truth of the NPS. Simulations were based on a clinical scanner (Definition Flash, Siemens) and clinically relevant settings (tube voltage of 120 kV at three dose levels). Images were reconstructed with filtered backprojection (kernel: B31, B41, and B50) and Sinogram Affirmed Iterative Reconstruction (kernel: I31, I41, and I50) using a manufacturer-specific reconstruction software (ReconCT, Siemens). All NPS measurements were made in the liver. Ground-truth NPS were taken as the sum of (1) a measurement in parenchymal regions of anatomy-subtracted (i.e., noise only) scans, and (2) a measurement in the same region of noise-free (pre-noise-insertion) images. To assess in vivo NPS performance, correlation of NPS average frequency ( f avg ), was reported. Sensitivity of accuracy [root-mean-square-error (RMSE)] to number of pixels included in measurement was conducted via bootstrapped pixel-dropout. Sensitivity of NPS to dose and reconstruction kernel was assessed to confirm that ground truth NPS similarities were maintained in patient-specific measurements. Results: Pearson and Spearman correlation coefficients 0.97 and 0.96 for f avg indicated good correlation. Results suggested accurate NPS measurements (within 5% total RMSE) could be acquired with ∼ 10 6 pixels . Conclusions: Relationships of similar NPS due to reconstruction kernel and dose were preserved between gold standard and observed in vivo estimations. The NPS estimation method was further deployed on clinical cases to demonstrate the feasibility of clinical analysis.

12.
Med Phys ; 48(12): 7698-7711, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34713908

ABSTRACT

PURPOSE: The current state-of-the-art calculation of detectability index (d') is largely phantom-based, with the latest being based on a hybrid phantom noise power spectrum (NPS) combined with patient-specific noise magnitude and high-contrast air-skin interface. The purpose of this study was to develop and assess the use of fully patient-specific measurements of noise and low-contrast resolution, derived entirely from patient images on d'. METHODS: This study developed a d' calculation that is patient- and task-specific, employing newly developed algorithms for estimating patient-specific NPS and low-contrast task transfer function (TTF). The TTF estimation methodology used a trained regression support vector machine (SVM) to estimate a fitted form of the TTF given a variance-normalized estimate of the NPS (referred to as the TTFNPS ). The regression SVM was trained and tested using five-fold cross-validation on 192 scans (4 dose levels x 6 reconstruction kernels x 4 repeats) of a phantom with low-contrast polyethylene insert and reconstructed with filtered backprojection and iterative reconstructions across 12 clinically relevant kernels (FBP: B20f, B31f, B45f; SAFIRE: I26f, I31f, J45f with strengths: 2, 3, 5). To test the low-contrast TTF estimation method, the estimated TTFNPS measurements were compared to (1) TTF measurements from the air-phantom interface (referred to as the TTFair , representing the most patient-specific clinical alternative) and (2) TTF measurements from the edge of the low-contrast polyethylene insert (referred to as the TTFpoly ), which represented the gold standard of low-contrast TTF measurement. Patient-specific NPS, patient-specific noise magnitude, and patient-specific low-contrast TTF were further combined with a reference task function to calculate a d' (according to a non-prewhitening matched filter model) across 1120 lesions previously evaluated in 2AFC human observer detection of liver lesions. The resulting values were compared to the observer results using a generalized linear mixed-effects statistical model. The correlations between the model and observer results were also compared with previously reported values (using a hybrid method with phantom-derived NPS and TTFair ). RESULTS: The TTFNPS more accurately represented resolution across the considered reconstruction settings, compared with the TTFair . The out-of-fold predictions of the TTFNPS had statistically better root-mean-square error concordance (p < 0.05, one-tailed Wilcoxon rank-sum test) to gold standard than the TTFair (the alternative, measured from the air-phantom interface). Detectability indices informed by purely patient-specific NPS and TTF were strongly correlated with 2AFC outcomes (p < 0.05). R2 between human detection accuracy and model-predicted detection accuracy were shown to be greater for those measured with patient-specific d' than for the hybrid d' but failed to rise to the level of statistical significance (p ≥ 0.05, bootstrap resampled corrected paired Student's t-test). CONCLUSIONS: The results suggest that fully patient-specific characterization of image quality based on in vivo NPS and low-contrast TTF offer advantages over hybrid methods. The results in terms of d' favorably relate to observer detection of liver lesions. The method can potentially be integrated into an automated image quality tracking system to assess image quality across a computed tomography clinical operation without needing phantom scans.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Humans , Linear Models , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
13.
J Appl Clin Med Phys ; 22(10): 249-260, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34472700

ABSTRACT

A novel routine dual-energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual-energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.5, 1, 2, and 5 mg/ml) and one calcium insert (100 mg/ml) equally spaced in a cylindrical water-equivalent background. The imaging protocol was based on a clinical DECT abdominal protocol capable of producing material specific concentration maps, virtual unenhanced images, and virtual monochromatic images. The QC automated analysis software uses open-source technologies which integrates well with our current automated CT QC database. The QC program was tested on a GE 750 HD scanner and two Siemens SOMATOM FLASH scanners over a 3-month period. The automated algorithm correctly identified the appropriate region of interest (ROI) locations and stores measured values in a database for monitoring and trend analysis. Slight variations in protocol settings were noted based on manufacturer. Overall, the project proved to provide a convenient and dependable clinical tool for routine oversight of DE CT imaging within the clinic.


Subject(s)
Iodine , Radiography, Dual-Energy Scanned Projection , Humans , Phantoms, Imaging , Quality Control , Tomography, X-Ray Computed
14.
IEEE Trans Radiat Plasma Med Sci ; 5(4): 588-595, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34250326

ABSTRACT

Photon-counting CT detectors are the next step in advancing CT system development and will replace the current energy integrating detectors (EID) in CT systems in the near future. In this context, the performance of PCCT was compared to EID CT for three clinically relevant tasks: abdominal soft tissue imaging, where differentiating low contrast features is important; vascular imaging, where iodine detectability is critical; and, high-resolution skeletal and lung imaging. A multi-tiered phantom was imaged on an investigational clinical PCCT system (Siemens Healthineers) across different doses using three imaging modes: macro and ultra-high resolution (UHR) PCCT modes and EID CT. Images were reconstructed using filtered backprojection and soft tissue (B30f), vascular (B46f), or high-resolution (B70f; U70f for UHR) kernels. Noise power spectra, task transfer functions, and detectability index were evaluated. For a soft tissue task, PCCT modes showed comparable noise and resolution with improved contrast-to-noise ratio. For a vascular task, PCCT modes showed lower noise and improved iodine detectability. For a high resolution task, macro mode showed lower noise and comparable resolution while UHR mode showed higher noise but improved spatial resolution for both air and bone. PCCT offers competitive advantages to EID CT for clinical tasks.

15.
Eur J Radiol ; 141: 109825, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34144309

ABSTRACT

OBJECTIVE: To assess the diagnostic performance and reader confidence in determining the resectability of pancreatic cancer at computed tomography (CT) using a new deep learning image reconstruction (DLIR) algorithm. METHODS: A retrospective review was conduct of on forty-seven patients with pathologically confirmed pancreatic cancers who underwent baseline multiphasic contrast-enhanced CT scan. Image data sets were reconstructed using filtered back projection (FBP), hybrid model-based adaptive statistical iterative reconstruction (ASiR-V) 60 %, and DLIR "TrueFidelity" at low(L), medium(M), and high strength levels(H). Four board-certified abdominal radiologists reviewed the CT images and classified cancers as resectable, borderline resectable, or unresectable. Diagnostic performance and reader confidence for categorizing the resectability of pancreatic cancer were evaluated based on the reference standards, and the interreader agreement was assessed using Fleiss k statistics. RESULTS: For prediction of margin-negative resections(ie, R0), the average area under the receiver operating characteristic curve was significantly higher with DLIR-H (0.91; 95 % confidence interval [CI]: 0.79, 0.98) than FBP (0.75; 95 % CI:0.60, 0.86) and ASiR-V (0.81; 95 % CI:0.67, 0.91) (p = 0.030 and 0.023 respectively). Reader confidence scores were significantly better using DLIR compared to FBP and ASiR-V 60 % and increased linearly with the increase of DLIR strength level (all p < 0.001). Among the image reconstructions, DLIR-H showed the highest interreader agreement in the resectability classification and lowest subject variability in the reader confidence. CONCLUSIONS: The DLIR-H algorithm may improve the diagnostic performance and reader confidence in the CT assignment of the local resectability of pancreatic cancer while reducing the interreader variability.


Subject(s)
Deep Learning , Pancreatic Neoplasms , Algorithms , Humans , Image Processing, Computer-Assisted , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies
16.
J Comput Assist Tomogr ; 45(3): 421-426, 2021.
Article in English | MEDLINE | ID: mdl-33797440

ABSTRACT

OBJECTIVE: The objective of this study was to assess the impact of tube voltage and image display on the identification of power ports features on anterior-posterior scout images to inform optimal workflow for multidetector computed tomography (MDCT) examinations. MATERIALS AND METHODS: Four ports, representing variable material composition (titanium/silicone), shapes, and computed tomography (CT) markings, were imaged on an adult anthropomorphic chest phantom using a dual-source MDCT at variable peak tube voltages (80, 100, 120, 150, and Sn150 kVp). Images were reviewed at variable image display setting by 5 blinded readers to assess port features of material composition, shape, and text markings as well as overall preferred image quality. RESULTS: Material composition was correctly identified for all ports by all readers across all kilovoltage-peak settings. The identification by shape was more reliable than CT markers for all but one of the ports. CT marker identification was up to 80% for titanium ports at window level settings optimized for metal (window width, 200; window center, -150) and at a soft tissue setting (window width, 400; window center, 40) for silicone ports. Interreader agreement for best image quality per kilovoltage-peak setting was moderate to substantial for 3 ports (k = 0.5-0.62) but only fair for 1 port (k = 0.27). The highest overall rank for image quality was given unanimously to Sn150 kVp for imaging titanium ports and 100 kVp for silicone ports. CONCLUSIONS: Power port identification on MDCT scout images can be optimized with modification of MDCT scout acquisition and display settings based on the main port material.


Subject(s)
Multidetector Computed Tomography/instrumentation , Radiographic Image Interpretation, Computer-Assisted/methods , Thorax/anatomy & histology , Adult , Humans , Multidetector Computed Tomography/methods , Observer Variation , Phantoms, Imaging , Thorax/diagnostic imaging
17.
Abdom Radiol (NY) ; 46(1): 226-236, 2021 01.
Article in English | MEDLINE | ID: mdl-32524151

ABSTRACT

PURPOSE: To evaluate the variability of quantitative measurements of metastatic liver lesions by using a multi-radiation-dose-level and multi-reader comparison. METHODS: Twenty-three study subjects (mean age, 60 years) with 39 liver lesions who underwent a single-energy dual-source contrast-enhanced staging CT between June 2015 and December 2015 were included. CT data were reconstructed with seven different radiation dose levels (ranging from 25 to 100%) on the basis of a single CT acquisition. Four radiologists independently performed manual tumor measurements and two radiologists performed semi-automated tumor measurements. Interobserver, intraobserver, and interdose sources of variability for longest diameter and volumetric measurements were estimated and compared using Wilcoxon rank-sum tests and intraclass correlation coefficients. RESULTS: Inter- and intraobserver variabilities for manual measurements of the longest diameter were higher compared to semi-automated measurements (p < 0.001 for overall). Inter- and intraobserver variabilities of volume measurements were higher compared to the longest diameter measurement (p < 0.001 for overall). Quantitative measurements were statistically different at < 50% radiation dose levels for semi-automated measurements of the longest diameter, and at 25% radiation dose level for volumetric measurements. The variability related to radiation dose was not significantly different from the inter- and intraobserver variability for the measurements of the longest diameter. CONCLUSION: The variability related to radiation dose is comparable to the inter- and intraobserver variability for measurements of the longest diameter. Caution should be warranted in reducing radiation dose level below 50% of a conventional CT protocol due to the potentially detrimental impact on the assessment of lesion response in the liver.


Subject(s)
Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Middle Aged , Observer Variation , Radiation Dosage , Reproducibility of Results
18.
Acad Radiol ; 28(12): 1754-1760, 2021 12.
Article in English | MEDLINE | ID: mdl-32855051

ABSTRACT

RATIONALE AND OBJECTIVES: The purpose of this study was to investigate the potential of photon-counting CT (PCCT) to improve quantitative image quality for low dose imaging compared to energy-integrating detector CT (EID CT). MATERIALS AND METHODS: An investigational scanner (Siemens, Germany) with PCCT and EID CT subsystems was used to compare image quality performance at four dose levels: 1.7, 2, 4, 6 mGy CTDIvol, all at or below current dose values used for conventional abdominal CT. A CT quality control phantom with a homogeneous section for noise measurements and a section with cylindrical inserts of air (-910 HU), polystyrene (50 HU), acrylic (205 HU), and Teflon (1000 HU) was imaged and characterized in terms of noise, resolution, contrast-to-noise ratio (CNR), and detectability index. A second phantom with a 30 cm diameter was also imaged containing iodine solutions ranging from 0.125 to 8 mg I/mL. CNR of the iodine vials was computed as a function of CT dose and iodine concentration. RESULTS: With resolution unaffected by dose in both PCCT and EID CT, PCCT images exhibited 22.1-24.0% improvement in noise across dose levels evaluated. This noise improvement translated into a 29-41% improvement in CNR and 20-36% improvement in detectability index. For iodine contrast, PCCT images had a higher CNR for all combinations of iodine contrast and dose evaluated. CONCLUSION: For the conditions studied, PCCT exhibited superior image quality compared to EID CT. For iodine detection, PCCT offered a notable advantage with improved CNR at all doses and iodine concentration levels.


Subject(s)
Iodine , Tomography, X-Ray Computed , Germany , Humans , Phantoms, Imaging , Photons
19.
Acad Radiol ; 28(11): 1570-1581, 2021 11.
Article in English | MEDLINE | ID: mdl-32828664

ABSTRACT

RATIONALE AND OBJECTIVES: The 3-fold purpose of this study was to (1) develop a method to relate measured differences in radiomics features in different computed tomography (CT) scans to one another and to true feature differences; (2) quantify minimum detectable change in radiomics features based on measured radiomics features from pairs of synthesized CT images acquired under variable CT scan settings, and (3) ascertain and inform the recommendations of the Quantitative Imaging Biomarkers Alliance (QIBA) for nodule volumetry. MATERIALS AND METHODS: Images of anthropomorphic lung nodule models were simulated using resolution and noise properties for 297 unique imaging conditions. Nineteen morphology features were calculated from both the segmentation masks derived from the imaged nodules and from ground truth nodules. Analysis was performed to calculate minimum detectable difference of radiomics features as a function of imaging protocols in comparison to QIBA guidelines. RESULTS: The minimum detectable differences ranged from 1% to 175% depending on the specific feature and set of imaging protocols. The results showed that QIBA protocol recommendations result in improved minimum detectable difference as compared to the range of possible protocols. The results showed that the minimum detectable differences may be improved from QIBA's current recommendation by further restricting the slice thickness requirement to be between 0.5 mm and 1 mm. CONCLUSION: Minimum detectable differences of radiomics features were quantified for lung nodules across a wide range of possible protocols. The results can be used prospectively to inform decision-making about imaging protocols to provide superior quantification of radiomics features.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging
20.
Phys Rev E ; 104(6-1): 064130, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030824

ABSTRACT

The space of connected graph partitions underlies statistical models used as evidence in court cases and reform efforts that analyze political districting plans. In response to the demands of redistricting applications, researchers have developed sampling methods that traverse this space, building on techniques developed for statistical physics. In this paper, we study connections between redistricting and statistical physics, and in particular with self-avoiding walks. We exploit knowledge of phase transitions and asymptotic behavior in self-avoiding walks to analyze two questions of crucial importance for Markov chain Monte Carlo analysis of districting plans. First, we examine mixing times of a popular Glauber dynamics-based Markov chain and show how the self-avoiding walk phase transitions interact with mixing time. We examine factors new to the redistricting context that complicate the picture, notably the population balance requirements, connectivity requirements, and the irregular graphs used. Second, we analyze the robustness of the qualitative properties of typical districting plans with respect to score functions and a certain lattice-like graph, called the state-dual graph, that is used as a discretization of geographic regions in most districting analysis. This helps us better understand the complex relationship between typical properties of districting plans and the score functions designed by political districting analysts. We conclude with directions for research at the interface of statistical physics, Markov chains, and political districting.

SELECTION OF CITATIONS
SEARCH DETAIL
...