Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 43: 108464, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35911627

ABSTRACT

The data presented here refer to the research article by Aleksei V. Solomonov, Yuriy S. Marfin, Alexander B. Tesler, Dmitry A. Merkushev, Elizaveta A. Bogatyreva, Elena V. Antina, Evgeniy V. Rumyantsev, and Ulyana Shimanovich "Spanning BODIPY fluorescence with self-assembled micellar clusters", Colloids and Surfaces B: Biointerfaces, 216, 2022, 112532. The present article provides details on optical characterization for a set of meso- and tetra-substituted boron-dipyrrin (BODIPY) complexes encapsulated inside of self-assembled Triton-X-based micellar coordination clusters (MCCs), based on Triton-X family surfactants. Changes in the optical properties of the BODIPY complexes upon interaction with bovine serum albumin, in a binary mixture of THF:H2O and titrated with Triton TX-114, were evaluated. The optical properties and the formation kinetics of the BODIPY-based MCCs and the BODIPY-supported micelle chelator aggregates (MCAs) are presented as well. The presented data provide additional insights into the structural and formation aspects of both the traditional and newly obtained micellar coordination clusters for their future optimization, control, and application. The synthetic procedures for the synthesis of a set of meso- and tetra-substituted BODIPY complexes and their optical properties in different media are also presented. The research is related to the paper (Solomonov et al., 2022).

2.
Colloids Surf B Biointerfaces ; 216: 112532, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35525227

ABSTRACT

BODIPY dyes possess favorable optical properties for a variety of applications including in vivo and in vitro diagnostics. However, their utilization might be limited by their water insolubility and incompatibility with chemical modifications, resulting in low aggregation stability. Here, we outline the route for addressing this issue. We have demonstrated two approaches, based on dye entrapment in micellar coordination clusters (MCCs); this provides a general solution for water solubility as well as aggregation stability of the seven BODIPY derivatives. These derivatives have various bulky aromatic substituents in the 2,3,5,6- and meso-positions and can rotate relative to a dipyrrin core, which also provides molecular rotor properties. The molecular structural features and the presence of aromatic groups allows BODIPY dyes to be used as "supporting molecules", thus promoting micelle-micelle interaction and micellar network stabilization. In the second approach, self-micellization, following BODIPY use, leads to MCC formation without the use of any mediators, including chelators and/or metal ions. In both approaches, BODIPY exhibits an excellent optical response, at a concentration beyond its solubilization limit in aqueous media and without undesired crystallization. The suggested approaches represent systems used to encapsulate BODIPY in a capsule-based surfactant environment, enabling one to track the aggregation of BODIPY; these approaches represent an alternative system to study and apply BODIPY's molecular rotor properties. The stabilized compounds, i.e., the BODIPY-loaded MCCs, provide a unique feature of permeability to hydrophilic ligand-switching proteins such as BSA; they exhibit a bright "turn-on" fluorescence signal within the clusters via macromolecular complexation, thus expanding the possibilities of water-soluble BODIPY-loaded MCCs utilization for functional indicators.


Subject(s)
Fluorescent Dyes , Micelles , Boron Compounds/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...