Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 668: 37-49, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669994

ABSTRACT

In this study, we introduce a hydrogel-polymer microsphere (HPM) composite material constituted of PVA, glycerin, and polymer microspheres obtained from Pickering emulsions that are capable of adsorbing Cu2+ ions. The obtained HPM composite is soft, flexible, can be fully saturated with Cu2+ ions, and exhibits a reversible color transition from blue to black upon electrode contact or interaction with a reducing agent, due to in situ generation of copper nanoparticles (Cu-NPs). Because of the color contrast between the locally generated Cu-NPs and the background, the HPM can be used as substrate for stamping different shapes or writing text. Further, the surface can be erased by an acidic solution, which makes it interesting as flexible write-erase displays. A second feature of the HPM is that it can function as a fluorescence detector of cyanide ions. An HPM whose surface has been stamped with an electrode, upon contacting an aqueous solution containing cyanide ions, begins fluorescing a yellow-green light around the patterned area. The displayed luminescence is irreversible and is preserved even after HPM's drying or lyophilization. This work lays a foundational framework for future exploration of the HPM composites in various technological applications, for sensing, circuit printing, and flexible displays.

2.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836261

ABSTRACT

Innovative materials and technologies capable of extraction and recovery of technologically relevant metal ions from various water sources, such as lakes, oceans, ponds, or wastewater reservoirs, are in great demand. Polymer beads are among the most well-known solid-phase adsorbents and ion exchangers employed in metal ion recovery. On the other hand, hydrogels are an emerging platform for producing innovative adsorbents, which are environmentally friendly and biocompatible materials. In this work, we take advantage of both technologies and produce a new type of material by loading nanostructured polymer microsphere adsorbent into a PVA matrix to obtain a hydrogel polymer microsphere (HPM) composite in the form of a block. The main role of the poly(4-vinylpyrridine-co-methacrylic acid) microspheres is to adsorb metal ions, such as Cu(II), from model water samples. The secondary role of these microspheres in the hydrogel is to change the hydrogel morphology by softening it and stabilizing it under a foam-like morphology. The foam-like morphology endows these composites with the capability of floating on water surfaces. In this work, we report, for the first time, an HPM composite capable of floating on water surfaces and extracting Cu(II) ions from model water samples. This could enable more environmentally friendly hydrological mining technologies by simply deploying adsorbents on water surfaces for metal ion extraction and recovery, thus eliminating the need for water pumping and mechanical processing steps.

3.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447544

ABSTRACT

Nanoparticles are often used as fillers for enhancing various properties of polymer composites such as mechanical, electrical, or dielectric. Among them, polymer nanoparticles are considered ideal contenders because of their compatibility with a polymer matrix. For this reason, it is important that they are synthesized in a surfactant-free form, to obtain predictable surface and structural properties. Here, we synthesized a series of polystyrene nanoparticles (PS NPs), by emulsion polymerization of styrene, using varying amounts of divinylbenzene as a crosslinking agent and sodium 4-vinylbenzenesulfonate as a copolymerizing monomer surfactant-"surfmer". Using "surfmers" we obtained surfactant-free nanoparticles that are monodisperse, with a high degree of thermal stability, as observed by scanning electron microscopy and thermogravimetric investigations. The prepared series of NPs were investigated by means of broadband dielectric spectroscopy and we demonstrate that by fine-tuning their chemical composition, fine changes in their dielectric and thermal properties are obtained. Further, we demonstrate that the physical transformations in the nanoparticles, such as the glass transition, can be predicted by performing the first derivative of dielectric permittivity for all investigated samples. The glass transition temperature of PS NPs appears to be inversely correlated with the dielectric permittivity and the average diameter of NPs.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500855

ABSTRACT

The properties of organic heterostructures with mixed layers made of arylenevinylene-based polymer donor and non-fullerene perylene diimide acceptor, deposited using Matrix Assisted Pulsed Laser Evaporation on flat Al and nano-patterned Al electrodes, were investigated. The Al layer electrode deposited on the 2D array of cylindrical nanostructures with a periodicity of 1.1 µm, developed in a polymeric layer using UV-Nanoimprint Lithography, is characterized by an inflorescence-like morphology. The effect of the nanostructuring on the optical and electrical properties was studied by comparison with those of the heterostructures based on a mixed layer with fullerene derivative acceptor. The low roughness of the mixed layer deposited on flat Al was associated with high reflectance. The nano-patterning, which was preserved in the mixed layer, determining the light trapping by multiple scattering, correlated with the high roughness and led to lower reflectance. A decrease was also revealed in photoluminescence emission both at UV and Vis excitation of the mixed layer, with the non-fullerene acceptor deposited on nano-patterned Al. An injector contact behavior was highlighted for all Al/mixed layer/ITO heterostructures by I-V characteristics in dark. The current increased, independently of acceptor (fullerene or non-fullerene), in the heterostructures with nano-patterned Al electrodes for shorter conjugation length polymer donors.

5.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365631

ABSTRACT

Flexible materials that provide an electric, magnetic, or optic response upon deformation or tactile pressure could be important for the development of smart monitors, intelligent textiles, or in the development of robotic skins. In this work we demonstrate the capabilities of a flexible and electrically conductive polymer material that produces an electrical response with any deformation, namely the electrical resistance of the material changes proportionally with the deformation pressure. Furthermore, the material exhibits a memory effect. When compressed beyond the elastic regime, it retains the memory of the plastic deformation by increasing its resistance. The material was obtained by in situ polymerization of semiconducting polyaniline (PANi) in a polyvinyl alcohol/glycerol (PVA/Gly) hydrogel matrix at -17 °C. Upon drying of the hydrogel, an elastomer composite is obtained, with rubber-like characteristics. When compressed/decompressed, the electrical resistance of the material exhibits an unusually long equilibration/relaxation time, proportional with the load applied. These phenomena indicate a complex relaxation and reconfiguration process of the PANi/PVA elastomer matrix, with the shape change of the material due to mechanical stress.

6.
Polymers (Basel) ; 14(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683822

ABSTRACT

Semiconducting polymers with amphiphilic properties can play an increasing role in future organic and unimolecular electronic devices, especially due to their excellent processability and ease of self-assembly into thin films, but they could also be used as intermediate layers to improve electron transport in metal-organic junctions. In this work, we synthesized a homologous series of amphiphiles by copolymerization of aniline with aniline-N-propanesulfonic acid. The polymerization was first initiated with aniline, and the latter monomer was added at different time intervals: 2, 10, 20, 30, 40, and 60 min, spaced from the time of initiation. Thus, the poly(aniline-co-aniline-N-propanesulfonic acid) (PANi-co-PANs) homologous series of copolymers obtained had the same length of the water soluble PANs chain, and a variable length of the water insoluble PANi chain. We demonstrated that there is a strong structure-activity relationship in the homologous series of PANi-co-PANs copolymers, evidenced in the tensiometry and wettability studies, as well as in-depth conductivity with frequency and temperature investigations. We observed a gradual change in solubility, interfacial activity, and conductivity in the homologous series of amphiphiles within the boundaries set by the electrically insulating, hydrophilic PANs chain and the semiconducting, hydrophobic PANi chains; representing a viable platform toward designing polymers with tunable conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...