Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(10): 2689-2704, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38597367

ABSTRACT

Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.


Subject(s)
Cerium , Nanoparticles , Particle Size , Surface Properties , Cerium/chemistry , Cerium/pharmacology , Animals , Mice , Nanoparticles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Endothelial Cells/drug effects , Serum Albumin, Bovine/chemistry , Cattle
2.
Colloids Surf B Biointerfaces ; 220: 112960, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36308885

ABSTRACT

Cerium oxide nanoparticles (CeO2 NPs) are well known for their application in various fields of industry, as well as in biology and medicine. Knowledge of synthesis schemes, physicochemical and morphological features of nanoscale CeO2 is important for assessing their antioxidant behavior and understanding the mechanism of oxidative stress and its consequences. The choice of the method of synthesis should be based on the possibility to choose the conditions and parameters for obtaining CeO2 with controlled dimensions and a ratio of Се3+/Се4+ on their surface. In this study, CeO2 NPs are synthesized by precipitation in mixed water-alcohol solutions at constant pH = 9. The properties of obtained NPs are studied using various methods of physical-chemical characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. The size of CeO2 NPs varied from 14 to 4.2 nm with increasing alcohol concentration, while the effect of constant pH during synthesis on the morphology of the particles was insignificant. The synthesized nanoparticles form highly stable aqueous suspensions since their zeta-potential is higher than + 40 mV. It is found that the ability of CeO2 NPs to self-stabilize is associated with the presence of hydrated Ce4+ ions on their surface. In vitro biological studies have shown that, regardless of particle size, CeO2 NPs have antioxidant potential, but smaller NPs with a higher percentage of Ce3+ on the surface had a more effective antioxidant effect. In addition, the size-depended activity of CeO2 NPs to inhibit the amyloid formation of insulin is demonstrated.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Antioxidants/pharmacology , Cerium/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry
3.
Heliyon ; 8(3): e09163, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35846471

ABSTRACT

Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (Dhydro = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...