ABSTRACT
This review aims to characterize the current landscape of exoskeletons designed to promote medical care and occupational safety in industrial settings. Extensive exploration of scientific databases spanning industries, health, and medicine informs the classification of exoskeletons according to their distinctive attributes and specific footholds on the human physique. Within the scope of this review, a comprehensive analysis is presented, contextualizing the integration of exoskeletons based on different work activities. The reviewers extracted the most relevant articles published between 2008 and 2023 from IEEE, Proquest, PubMed, Science Direct, Scopus, Web of Science, and other databases. In this review, the PRISMA-ScR checklist was used, and a Cohen's kappa coefficient of 0.642 was applied, implying moderate agreement among the reviewers; 75 primary studies were extracted from a total of 344. The future of exoskeletons in contributing to occupational health and safety will depend on continued collaboration between researchers, designers, healthcare professionals, and industries. With the continued development of technologies and an increasing understanding of how these devices interact with the human body, exoskeletons will likely remain valuable for improving working conditions and safety in various work environments.
ABSTRACT
The objective of this scoping review is to characterize the current panorama of inertia sensors for the rehabilitation of hip arthroplasty. In this context, the most widely used sensors are IMUs, which combine accelerometers and gyroscopes to measure acceleration and angular velocity in three axes. We found that data collected by the IMU sensors are used to analyze and detect any deviation from the normal to measure the position and movement of the hip joint. The main functions of inertial sensors are to measure various aspects of training, such as speed, acceleration, and body orientation. The reviewers extracted the most relevant articles published between 2010 and 2023 in the ACM Digital Library, PubMed, ScienceDirect, Scopus, and Web of Science. In this scoping review, the PRISMA-ScR checklist was used, and a Cohen's kappa coefficient of 0.4866 was applied, implying moderate agreement between reviewers; 23 primary studies were extracted from a total of 681. In the future, it will be an excellent challenge for experts in inertial sensors with medical applications to provide access codes for other researchers, which will be one of the most critical trends in the advancement of applications of portable inertial sensors for biomechanics.