Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36298272

ABSTRACT

Parkinson's disease (PD) is increasingly being studied using science-intensive methods due to economic, medical, rehabilitation and social reasons. Wearable sensors and Internet of Things-enabled technologies look promising for monitoring motor activity and gait in PD patients. In this study, we sought to evaluate gait characteristics by analyzing the accelerometer signal received from a smartphone attached to the head during an extended TUG test, before and after single and repeated sessions of terrestrial microgravity modeled with the condition of "dry" immersion (DI) in five subjects with PD. The accelerometer signal from IMU during walking phases of the TUG test allowed for the recognition and characterization of up to 35 steps. In some patients with PD, unusually long steps have been identified, which could potentially have diagnostic value. It was found that after one DI session, stepping did not change, though in one subject it significantly improved (cadence, heel strike and step length). After a course of DI sessions, some characteristics of the TUG test improved significantly. In conclusion, the use of accelerometer signals received from a smartphone IMU looks promising for the creation of an IoT-enabled system to monitor gait in subjects with PD.


Subject(s)
Parkinson Disease , Smartphone , Humans , Gait , Parkinson Disease/diagnosis , Parkinson Disease/rehabilitation , Walking
2.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365935

ABSTRACT

This work studies the factors that affect the efficiency of the photoelectrochemical hydrogen evolution reaction (HER) using MoSx/WO3 nano-heterostructures obtained by reactive pulsed laser deposition (RPLD) on glass substrates covered with fluorinated tin oxide (FTO). Another focus of the research is the potential of MoSx nanofilms as a precursor for MoOz(S) nanofilms, which enhance the efficiency of the photo-activated oxygen evolution reaction (OER) using the MoOz(S)/WO3/FTO heterostructures. The nanocrystalline WO3 film was created by laser ablation of a W target in dry air at a substrate temperature of 420 °C. Amorphous MoSx nanofilms (2 ≤ x ≤ 12) were obtained by laser ablation of an Mo target in H2S gas of varied pressure at room temperature of the substrate. Studies of the energy band structures showed that for all MoSx/WO3/FTO samples, photo-activated HER in an acid solution proceeded through the Z-scheme. The highest photoelectrochemical HER efficiency (a photocurrent density ~1 mA/cm2 at a potential of ~0 V under Xe lamp illumination (~100 mW/cm2)) was found for porous MoS4.5 films containing the highest concentration of catalytically active sites attributed to S ligands. During the anodic posttreatment of porous MoSx nanofilms, MoOz(S) films with a narrow energy band gap were formed. The highest OER efficiency (a photocurrent density ~5.3 mA/cm2 at 1.6 V) was detected for MoOz(S)/WO3/FTO photoanodes that were prepared by posttreatment of the MoSx~3.2 precursor. The MoOz(S) film contributed to the effective photogeneration of electron-hole pairs that was followed by the transport of photoelectrons from MoOz(S) into the WO3 film and the effective participation of holes possessing strong oxidation ability in the OER on the surface of the MoOz(S) film.

SELECTION OF CITATIONS
SEARCH DETAIL
...