Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 194(Pt A): 115403, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586270

ABSTRACT

Microplastic particles are widespread pollutants in the sea and filter-feeding sponges have recently been suggested as useful monitoring organisms. However, the fate of microplastic particles in sponges is poorly understood, yet crucial for interpreting monitoring data. The present study aims to help develop sponges as more useful monitoring organisms for microplastic in the sea. Here, we describe the fate of inedible (2 and 10 µm) plastic beads compared to that of edible bacteria and algal cells captured in the marine demosponge Halichondria panicea. Small Cyanobium bacillare cells entered the choanocyte chambers and were phagocytized by choanocytes, while larger Rhodomonas salina cells were captured in incurrent canals and phagocytized in the mesohyl. Small 2 µm-beads were captured by choanocytes and subsequently expelled into the excurrent canals after 58 ± 34 min. Larger 10 µm-beads were captured in the incurrent canals and transferred to the mesohyl, where amoeboid cells moved them across the mesohyl before they were expelled into the excurrent canal after 95 ± 36 min. SEM observations further indicated engulfment of plastic beads on the outer sponge surface. This insight provides useful information on how sponges, in general, treat microplastic particles of various sizes. It helps us understand actual measured sizes and concentrations of microplastic particles in sponges in relation to those in the ambient water.


Subject(s)
Porifera , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Bacteria , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Cells ; 11(13)2022 06 27.
Article in English | MEDLINE | ID: mdl-35805127

ABSTRACT

BACKGROUND: Night-migratory birds sense the Earth's magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. METHODS: Protein-protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. RESULTS: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. CONCLUSIONS: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.


Subject(s)
Cryptochromes , Songbirds , Animals , Cryptochromes/metabolism , GTP-Binding Proteins/metabolism , Magnetic Fields , Retina/metabolism , Songbirds/metabolism
3.
Lasers Surg Med ; 54(6): 861-874, 2022 08.
Article in English | MEDLINE | ID: mdl-35451510

ABSTRACT

PURPOSE: Conventional oral antifungal therapies for onychomycosis (OM) often do not achieve complete cure and may be associated with adverse effects, medical interactions, and compliance issues restricting their use in a large group of patients. Topical treatment can bypass the systemic side effects but is limited by the physical barrier of the nail plate. Ablative fractional laser (AFL) treatment can be used to improve the penetration of topical drugs into the nail. This study visualized the effects of laser ablation of nail tissue and assessed their impact on the biodistribution of a fluorescent dye in healthy and fungal nail tissue. METHODS: For the qualitative assessment of CO2 AFL effects on healthy nail tissue, scanning electron microscopy (SEM), coherent anti-Stokes Raman scattering microscopy (CARS-M), and widefield fluorescence microscopy (WFM) were used. To quantitate the effect of laser-pretreatment on the delivery of a fluorescent dye, ATTO-647N, into healthy and fungal nail tissue, ablation depth, nail plate thickness, and ATTO-647N fluorescence intensity in three nail plate layers were measured using WFM. A total of 30 nail clippings (healthy n = 18, fungal n = 12) were collected. An aqueous ATTO-647N solution was directly applied to the dorsal surface of 24 nail samples (healthy n = 12, fungal n = 12) and incubated for 4 hours, of which half (healthy n = 6, fungal n = 6) had been pretreated with AFL (30 mJ/mb, 15% density, 300 Hz, pulse duration <1 ms). RESULTS: Imaging revealed a three-layered nail structure, an AFL-induced porous ablation crater, and changes in autofluorescence. While intact fungal samples showed a 106% higher ATTO-647N signal intensity than healthy controls, microporation led to a significantly increased fluorophore permeation in all samples (p < 0.0001). AFL processing of nail tissue enhanced topical delivery of ATTO-647N in all layers, (average increase: healthy +108%, fungal +33%), most pronounced in the top nail layer (healthy +122%, fungal +68%). While proportionally deeper ablation craters correlated moderately with higher fluorescence intensities in healthy nail tissue, fungal samples showed no significant relationship. CONCLUSION: Fractional CO2 laser microporation is a simple way of enhancing the passive delivery of topically applied ATTO-647N. Although the impaired nail plate barrier in OM leads to greater diffusion of the aqueous solution, AFL can increase the permeability of both structurally deficient and intact nails.


Subject(s)
Lasers, Gas , Onychomycosis , Administration, Topical , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Carbon Dioxide/therapeutic use , Fluorescent Dyes/therapeutic use , Humans , Lasers, Gas/therapeutic use , Nails , Onychomycosis/diagnostic imaging , Onychomycosis/surgery , Tissue Distribution
4.
Appl Spectrosc ; 74(7): 751-757, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32031016

ABSTRACT

In the following work, the vibrational spectroscopic characteristics of artepillin C are reported by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, surface-enhanced Raman scattering (SERS), and coherent anti-Stokes Raman scattering (CARS) microscopy. Artepillin C is an interesting compound due to its pharmacological properties, including antitumor activity. It is found as the major component of Brazilian green propolis, a resinous mixture produced by bees to protect their hives against intruders. Vibrational spectroscopic techniques have shown a strong peak at 1599 cm-1, assigned to C=C stretching vibrations from the aromatic ring of artepillin C. From these data, direct visualization of artepillin C could be assessed by means of CARS microscopy, showing differences in the film hydration obtained for its neutral and deprotonated states. Raman-based methods show potential to visualize the uptake and action of artepillin C in biological systems, triggering its interaction with biological systems that are needed to understand its mechanism of action.


Subject(s)
Phenylpropionates/chemistry , Molecular Conformation , Propolis/chemistry , Spectrum Analysis, Raman
5.
Sci Rep ; 8(1): 10309, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29985397

ABSTRACT

Annexins are a family of proteins characterized by their ability to bind anionic membranes in response to Ca2+-activation. They are involved in a multitude of cellular functions including vesiculation and membrane repair. Here, we investigate the effect of nine annexins (ANXA1-ANXA7, ANXA11, ANXA13) on negatively charged double supported membrane patches with free edges. We find that annexin members can be classified according to the membrane morphology they induce and matching a dendrogam of the annexin family based on full amino acid sequences. ANXA1 and ANXA2 induce membrane folding and blebbing initiated from membrane structural defects inside patches while ANXA6 induces membrane folding originating both from defects and from the membrane edges. ANXA4 and ANXA5 induce cooperative roll-up of the membrane starting from free edges, producing large rolls. In contrast, ANXA3 and ANXA13 roll the membrane in a fragmented manner producing multiple thin rolls. In addition to rolling, ANXA7 and ANXA11 are characterized by their ability to form fluid lenses localized between the membrane leaflets. A shared feature necessary for generating these morphologies is the ability to induce membrane curvature on free edged anionic membranes. Consequently, induction of membrane curvature may be a significant property of the annexin protein family that is important for their function.


Subject(s)
Annexins/metabolism , Lipid Bilayers/chemistry , Aluminum Silicates/chemistry , Annexins/chemistry , Annexins/genetics , Humans , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Microscopy, Fluorescence , Models, Molecular , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
6.
J Proteome Res ; 17(4): 1664-1676, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29518335

ABSTRACT

Characterization of molecular mechanisms underlying pancreatic ß-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of ß-cells after brief, high glucose stimulation. We compared purified nuclei derived from ß-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic ß-cells.


Subject(s)
Cell Nucleus/metabolism , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Nuclear Proteins/analysis , Protein Transport/drug effects , Cells, Cultured , Cytoplasm/metabolism , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/ultrastructure , Mass Spectrometry , Nuclear Proteins/drug effects , Proteomics , Time Factors
7.
Langmuir ; 31(46): 12699-707, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26501924

ABSTRACT

Gel domains in lipid bilayers are structurally more complex than fluid domains. Growth dynamics can lead to noncircular domains with a heterogeneous orientational texture. Most model membrane studies involving gel domain morphology and lateral organization assume the domains to be static. Here we show that rosette shaped gel domains, with heterogeneous orientational texture and a central topological defect, after early stage growth, undergo slow relaxation. On a time scale of days to weeks domains converge to circular shapes and approach uniform texture. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) enriched gel domains are grown by cooling 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DPPC bilayers into the solid-liquid phase coexistence region and are visualized with fluorescence microscopy. The relaxation of individual domains is quantified through image analysis of time-lapse image series. We find a shape relaxation mechanism which is inconsistent with Ostwald ripening and coalescence as observed in membrane systems with coexisting liquid phases. Moreover, domain texture changes in parallel with the changes in domain shape, and selective melting and growth of particular subdomains cause the texture to become more uniform. We propose a relaxation mechanism based on relocation of lipids from high-energy lattice positions, through evaporation-condensation and edge diffusion, to low-energy positions. The relaxation process is modified significantly by binding Shiga toxin, a bacterial toxin from Shigella dysenteriae, to the membrane surface. Binding alters the equilibrium shape of the gel domains from circular to eroded rosettes with disjointed subdomains. This observation may be explained by edge diffusion while evaporation-condensation is restricted, and it provides further support for the proposed overall relaxation mechanism.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Gels , Shiga Toxin/chemistry
8.
Soft Matter ; 11(1): 186-92, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25376469

ABSTRACT

Lateral variation of the in-plane orientation of lipids in a bilayer is referred to as texture. The influence of the protein Shiga toxin on orientational membrane texture was studied in phosphatidylcholine lipid bilayers using polarization two-photon fluorescence microscopy and atomic force microscopy. A content of 1% of glycosphingolipid globotriaosylceramide (Gb3) receptor lipids in a bilayer was used to bind the Shiga toxin B-subunit to the surface of gel domains. Binding of the Shiga toxin B-subunit to lipids led to the modulation of orientational membrane texture in gel domains and induced membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains.


Subject(s)
Dysentery, Bacillary/microbiology , Lipid Bilayers/metabolism , Phospholipids/metabolism , Shiga Toxin/metabolism , Shigella dysenteriae/metabolism , Trihexosylceramides/metabolism , Humans , Lipid Bilayers/chemistry , Phase Transition , Phospholipids/chemistry , Trihexosylceramides/chemistry
9.
Adv Healthc Mater ; 3(7): 995-1000, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24352858

ABSTRACT

This study aims at generating highly aligned functional myotubes using graphene as the underlying scaffold. Graphene not only supports the growth of C2C12 muscle cells but also enhances its differentiation and leads to spontaneous patterning of myotubes.


Subject(s)
Cell Differentiation/drug effects , Graphite/chemistry , Graphite/pharmacology , Myoblasts/cytology , Animals , Bioengineering , Cell Line , Mice
10.
ACS Nano ; 7(1): 834-43, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23249127

ABSTRACT

We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al(2)O(3) dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 10(4) A/cm(2). The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices.


Subject(s)
Biosensing Techniques/instrumentation , Electrodes , Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Materials Testing , Particle Size , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...