Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 12(11): e16044, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849292

ABSTRACT

This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.


Subject(s)
DNA Methylation , High-Intensity Interval Training , Hypoxia , Regional Blood Flow , Saliva , Humans , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Hypoxia/genetics , Pilot Projects , Adult , High-Intensity Interval Training/methods , Saliva/metabolism , Cross-Over Studies , Exercise/physiology , Young Adult
2.
Front Physiol ; 15: 1339284, 2024.
Article in English | MEDLINE | ID: mdl-38357500

ABSTRACT

Introduction: Repeated sprint cycling exercises (RSE) performed under systemic normobaric hypoxia (HYP) or with blood flow restriction (BFR) are of growing interest. To the best of our knowledge, there is no stringent consensus on the cardiorespiratory and neuromuscular responses between systemic HYP and BFR during RSE. Thus, this study assessed cardiorespiratory and neuromuscular responses to multiple sets of RSE under HYP or with BFR. Methods: According to a crossover design, fifteen men completed RSE (three sets of five 10-s sprints with 20 s of recovery) in normoxia (NOR), HYP, and with bilaterally-cuffed BFR at 45% of resting arterial occlusive pressure during sets in NOR. Power output, cardiorespiratory and neuromuscular responses were assessed. Results: Average peak and mean powers were lower in BFR (dz = 0.87 and dz = 1.23, respectively) and HYP (dz = 0.65 and dz = 1.21, respectively) compared to NOR (p < 0.001). The percentage decrement of power output was greater in BFR (dz = 0.94) and HYP (dz = 0.64) compared to NOR (p < 0.001), as well as in BFR compared to NOR (p = 0.037, dz = 0.30). The percentage decrease of maximal voluntary contraction of the knee extensors after the session was greater in BFR compared to NOR and HYP (p = 0.011, dz = 0.78 and p = 0.027, dz = 0.75, respectively). Accumulated ventilation during exercise was higher in HYP and lower in BFR (p = 0.002, dz = 0.51, and p < 0.001, dz = 0.71, respectively). Peak oxygen consumption was reduced in HYP (p < 0.001, dz = 1.47). Heart rate was lower in BFR during exercise and recovery (p < 0.001, dz = 0.82 and p = 0.012, dz = 0.43, respectively). Finally, aerobic contribution was reduced in HYP compared to NOR (p = 0.002, dz = 0.46) and BFR (p = 0.005, dz = 0.33). Discussion: Thus, this study indicates that power output during RSE is impaired in HYP and BFR and that BFR amplifies neuromuscular fatigue. In contrast, HYP did not impair neuromuscular function but enhanced the ventilatory response along with reduced oxygen consumption.

3.
J Sports Sci ; 41(11): 1126-1135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37722830

ABSTRACT

This study compared the acute effects of three recovery methods: active recovery (AR), hot- and cold-water immersion (HWI and CWI, respectively), used between two training sessions in elite athletes. Twelve national-team skaters (7 males, 5 females) completed three trials according to a randomized cross-over study. Fifteen minutes after an exhaustive ice-skating training session, participants underwent 20 min of HWI (41.1 ± 0.5°C), 15 min of CWI (12.1 ± 0.7°C) or 15 min of active recovery (AR). After 1 h 30 min of the first exercise, they performed a repeated-sprint cycling session. Average power output was slightly but significantly higher for AR (767 ± 179 W) and HWI (766 ± 170 W) compared to CWI (738 ± 156 W) (p = 0.026, d = 0.18). No statistical difference was observed between the conditions for both lactatemia and rating of perceived exertion. Furthermore, no significant effect of recovery was observed on the fatigue index calculated from the repeated sprint cycling exercises (p > 0.05). Finally, a positive correlation was found between the average muscle temperature measured during the recoveries and the maximal power output obtained during cycling exercises. In conclusion, the use of CWI in between high-intensity training sessions could slightly impair the performance outcomes compared to AR and HWI. However, studies with larger samples are needed to confirm these results, especially in less trained athletes.


Subject(s)
Cold Temperature , Immersion , Male , Humans , Exercise/physiology , Water , Fatigue
4.
J Physiol Anthropol ; 41(1): 32, 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36057591

ABSTRACT

This study compared the effects of a brief repeated sprint training (RST) intervention performed with bilateral blood flow restriction (BFR) conditions in normoxia or conducted at high levels of hypoxia on response to exercise. Thirty-nine endurance-trained athletes completed six repeated sprints cycling sessions spread over 2 weeks consisting of four sets of five sprints (10-s maximal sprints with 20-s active recovery). Athletes were assigned to one of the four groups and subjected to a bilateral partial blood flow restriction (45% of arterial occlusion pressure) of the lower limbs during exercise (BFRG), during the recovery (BFRrG), exercised in a hypoxic room simulating hypoxia at FiO2 ≈ 13% (HG) or were not subjected to additional stress (CG). Peak aerobic power during an incremental test, exercise duration, maximal accumulated oxygen deficit and accumulated oxygen uptake (VO2) during a supramaximal constant-intensity test were improved thanks to RST (p < 0.05). No significant differences were observed between the groups (p > 0.05). No further effect was found on other variables including time-trial performance and parameters of the force-velocity relationship (p > 0.05). Thus, peak aerobic power, exercise duration, maximal accumulated oxygen deficit, and VO2 were improved during a supramaximal constant-intensity exercise after six RST sessions. However, combined hypoxic stress or partial BFR did not further increase peak aerobic power.


Subject(s)
Hypoxia , Oxygen Consumption , Athletes , Hemodynamics , Humans , Oxygen
5.
Front Physiol ; 13: 864642, 2022.
Article in English | MEDLINE | ID: mdl-35923232

ABSTRACT

This study compared the kinetics of muscle deoxygenation and reoxygenation during a sprint interval protocol performed under four modalities: blood flow restriction at 60% of the resting femoral artery occlusive pressure (BFR), gravity-induced BFR (G-BFR), simulated hypoxia (FiO2≈13%, HYP) and normoxia (NOR). Thirteen healthy men performed each session composed of five all-out 30-s efforts interspaced with 4 min of passive recovery. Total work during the exercises was 17 ± 3.4, 15.8 ± 2.9, 16.7 ± 3.4, and 18.0 ± 3.0 kJ for BFR, G-BFR, HYP and NOR, respectively. Muscle oxygenation was continuously measured with near-infrared spectroscopy. Tissue saturation index (TSI) was modelled with a linear function at the beginning of the sprint and reoxygenation during recovery with an exponential function. Results showed that both models were adjusted to the TSI (R2 = 0.98 and 0.95, respectively). Greater deoxygenation rates were observed in NOR compared to BFR (p = 0.028). No difference was found between the conditions for the deoxygenation rates relative to sprint total work (p > 0.05). Concerning reoxygenation, the amplitude of the exponential was not different among conditions (p > 0.05). The time delay of reoxygenation was longer in BFR compared to the other conditions (p < 0.05). A longer time constant was found for G-BFR compared to the other conditions (p < 0.05), and mean response time was longer for BFR and G-BFR. Finally, sprint performance was correlated with faster reoxygenation. Hence, deoxygenation rates were not different between the conditions when expressed relatively to total sprint work. Furthermore, BFR conditions impair reoxygenation: BFR delays and G-BFR slows down reoxygenation.

9.
J Sports Sci ; 39(20): 2378-2385, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34058952

ABSTRACT

Mathematical models are used to describe and predict the effects of training on performance. The initial models are structured by impulse-type transfer functions, however, cellular adaptations induced by exercise may exhibit exponential kinetics for their growth and subsequent dissipation. Accumulation of exercise bouts counteracts dissipation and progressively induces structural and functional changes leading to performance improvement. This study examined the suitability of a model with exponential terms (Exp-Model) in elite short-track speed (ST) skaters. Training loads and performance evolution from fifteen athletes (10 males, 5 females) were previously collected over a 3-month training period. Here, we computed the relationship between training loads and performance with Exp-Model and compared with previous results obtained with a variable dose-response model (Imp-Model). Exp-Model showed a higher correlation between actual and modelled performances (R2 = 0.83 ± 0.08 and 0.76 ± 0.07 for Exp-Model and Imp-Model, respectively). Concerning model parameters, a higher τA1 (time constant for growth) value was found (p = 0.0047; d = 1.4; 95% CI [0.4;1.9]) in males compared to females with Exp-model, suggesting that females have a faster adaptative response to training loads. Thus, according to this study, Exp-model may better describe training adaptations in elite ST athletes than Imp-Model.


Subject(s)
Athletic Performance/physiology , Models, Statistical , Physical Conditioning, Human/physiology , Skating/physiology , Adaptation, Physiological , Adult , Athletic Performance/statistics & numerical data , Female , Humans , Male , Skating/statistics & numerical data , Young Adult
10.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800501

ABSTRACT

The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.


Subject(s)
Exercise , Muscle Development/physiology , Muscle, Skeletal/metabolism , Organelles/metabolism , Signal Transduction/physiology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism
11.
J Exerc Sci Fit ; 19(2): 134-142, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33603794

ABSTRACT

This study aimed to investigate the effects of regular hot water bathing (HWB), undertaken 10 min after the last training session of the day, on chronic adaptations to training in elite athletes. Six short-track (ST) speed skaters completed four weeks of post-training HWB and four weeks of post-training passive recovery (PR) according to a randomized cross-over study. During HWB, participants sat in a jacuzzi (40 °C; 20 min). According to linear mixed models, maximal isometric strength of knee extensor muscles was significantly increased for training with HWB (p < 0.0001; d = 0.41) and a tendency (p = 0.0529) was observed concerning V ˙ O 2 m a x . No significant effect of training with PR or HWB was observed for several variables (p > 0.05), including aerobic peak power output, the decline rate of jump height during 1 min-continuous maximal countermovement jumps (i.e. anaerobic capacity index), and the force-velocity relationship. Regarding specific tasks on ice, a small effect of training was found on both half-lap time and total time during a 1.5-lap all-out exercise (p = 0.0487; d = 0.23 and p = 0.0332; d = 0.21, respectively) but no additional effect of HWB was observed. In summary, the regular HWB protocol used in this study can induce additional effects on maximal isometric strength without compromising aerobic and anaerobic adaptations or field performance in these athletes.

12.
Front Physiol ; 12: 773950, 2021.
Article in English | MEDLINE | ID: mdl-34975526

ABSTRACT

Objective: The aim of this study was to determine the effects of sprint interval exercises (SIT) conducted under different conditions (hypoxia and blood flow restriction [BFR]) on mechanical, cardiorespiratory, and muscular O2 extraction responses. Methods: For this purpose, 13 healthy moderately trained men completed five bouts of 30 s all-out exercises interspaced by 4 min resting periods with lower limb bilateral BFR at 60% of the femoral artery occlusive pressure (BFR60) during the first 2 min of recovery, with gravity-induced BFR (pedaling in supine position; G-BFR), in a hypoxic chamber (FiO2≈13%; HYP) or without additional stress (NOR). Peak and average power, time to achieve peak power, rating of perceived exertion (RPE), and a fatigue index (FI) were analyzed. Gas exchanges and muscular oxygenation were measured by metabolic cart and NIRS, respectively. Heart rate (HR) and peripheral oxygen saturation (SpO2) were continuously recorded. Results: Regarding mechanical responses, peak and average power decreased after each sprint (p < 0.001) excepting between sprints four and five. Time to reach peak power increased between the three first sprints and sprint number five (p < 0.001). RPE increased throughout the exercises (p < 0.001). Of note, peak and average power, time to achieve peak power and RPE were lower in G-BFR (p < 0.001). Results also showed that SpO2 decreased in the last sprints for all the conditions and was lower for HYP (p < 0.001). In addition, Δ[O2Hb] increased in the last two sprints (p < 0.001). Concerning cardiorespiratory parameters, BFR60 application induced a decrease in gas exchange rates, which increased after its release compared to the other conditions (p < 0.001). Moreover, muscle blood concentration was higher for BFR60 (p < 0.001). Importantly, average and peak oxygen consumption and muscular oxyhemoglobin availability during sprints decreased for HYP (p < 0.001). Finally, the tissue saturation index was lower in G-BFR. Conclusions: Thus, SIT associated with G-BFR displayed lower mechanical, cardiorespiratory responses, and skeletal muscle oxygenation than the other conditions. Exercise with BFR60 promotes higher blood accumulation within working muscles, suggesting that BFR60 may additionally affect cellular stress. In addition, HYP and G-BFR induced local hypoxia with higher levels for G-BFR when considering both exercise bouts and recovery periods.

SELECTION OF CITATIONS
SEARCH DETAIL
...