Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 22(20): 15319-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25618309

ABSTRACT

Sediments from Bizerta lagoon were used in an experimental microcosm setup involving three scenarios for the bioremediation of anthracene-polluted sediments, namely bioaugmentation, biostimulation, and a combination of both bioaugmentation and biostimulation. In order to investigate the effect of the biotreatments on the benthic biosphere, 16S rRNA gene-based T-RFLP bacterial community structure and the abundance and diversity of the meiofauna were determined throughout the experiment period. Addition of fresh anthracene drastically reduced the benthic bacterial and meiofaunal abundances. The treatment combining biostimulation and bioaugmentation was most efficient in eliminating anthracene, resulting in a less toxic sedimentary environment, which restored meiofaunal abundance and diversity. Furthermore, canonical correspondence analysis showed that the biostimulation treatment promoted a bacterial community favorable to the development of nematodes while the treatment combining biostimulation and bioaugmentation resulted in a bacterial community that advantaged the development of the other meiofauna taxa (copepods, oligochaetes, polychaetes, and other) restoring thus the meiofaunal structure. The results highlight the importance to take into account the bacteria/meiofauna interactions during the implementation of bioremediation treatment.


Subject(s)
Anthracenes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , Ecosystem , Geologic Sediments/microbiology , Nematoda , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Tunisia
2.
Environ Sci Pollut Res Int ; 22(20): 15307-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25103943

ABSTRACT

The objectives of this study were (1) to assess the responses of benthic nematodes to a polycyclic aromatic hydrocarbon (PAH) contamination and (2) to test bioremediation techniques for their efficiency in PAH degradation and their effects on nematodes. Sediments with their natural nematofauna communities from Bizerte lagoon (Tunisia) were subjected to a PAH mixture (100 ppm) of phenanthrene, fluoranthene, and pyrene during 30 days. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that PAH treatments were significantly different from the control. Spirinia parasitifera became the dominant species (70 % relative abundance) and appeared to be an "opportunistic" species to PAH contamination while Oncholaimus campylocercoides and Neochromadora peocilosoma were strongly inhibited. Biostimulation (addition of mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation techniques. Bioremediation treatments enhanced degradation of all three PAHs, with up to 96 % degradation for phenanthrene resulting in a significant stimulation of nematode abundance relative to control microcosms. Nevertheless, these treatments, especially the biostimulation provoked a weak impact on the community structure and diversity index relative to the control microcosms suggesting their feasibility in biorestoration of contaminated sediments.


Subject(s)
Nematoda , Phenanthrenes/metabolism , Pyrenes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bacteria/metabolism , Biodegradation, Environmental , Fluorenes/metabolism , Geologic Sediments/chemistry , Multivariate Analysis , Tunisia
3.
Environ Sci Pollut Res Int ; 21(5): 3670-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24277429

ABSTRACT

A microcosm experiment was setup to examine (1) the effect of phenanthrene contamination on meiofauna and bacteria communities and (2) the effects of different bioremediation strategies on phenanthrene degradation and on the community structure of free-living marine nematodes. Sediments from Bizerte lagoon were contaminated with (100 mg kg(-1)) phenanthrene and effects were examined after 20 days. Biostimulation (addition of nitrogen and phosphorus fertilizer or mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Meiofauna was counted and identified at the higher taxon level using a stereomicroscope. Nematodes, comprising approximately two thirds of total meiofauna abundance, were identified to genus or species. Phenanthrene contamination had a severe impact on bacteria and meiofauna abundances with a strong decrease of nematodes with a complete disappearance of polychaetes and copepods. Bioremediation counter balanced the toxic effects of phenanthrene since meiofauna and bacteria abundances were significantly higher (p < 0.01) than those observed in phenanthrene contamination. Up to 98 % of phenanthrene removal was observed. In response to phenanthrene contamination, the nematode species had different behavior: Daptonema fallax was eliminated in contaminated microcosms, suggesting that it is an intolerant species to phenanthrene; Neochromadora peocilosoma, Spirinia parasitifera, and Odontophora n. sp., which significantly (p < 0.05) increased in contaminated microcosms, could be considered as "opportunistic" species to phenanthrene whereas Anticoma acuminata and Calomicrolaimus honestus increased in the treatment combining biostimulation and bioaugmentation. Phenanthrene had a significant effect on meiofaunal and bacterial abundances (p < 0.05), with a strong reduction of density and change in the nematode communities. Biostimulation using mineral salt medium strongly enhanced phenanthrene removal, leading to a decrease of its toxicity. This finding opens exciting axes for the future use of biostimulation to reduce toxic effects of PAHs for meiofauna and bacteria in lagoon sediment.


Subject(s)
Bacillus megaterium/metabolism , Nematoda/drug effects , Phenanthrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bacillus megaterium/drug effects , Bacterial Load , Biodegradation, Environmental , Biodiversity , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Nematoda/classification , Nitrogen/pharmacology , Phosphorus/pharmacology
4.
Ecotoxicology ; 23(2): 201-12, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24357236

ABSTRACT

A microcosm experiment was used to examine (1) the effects of different bioremediation schemes on degradation of anthracene and the structure of free-living marine nematodes in a lightly contaminated (4.5 µg g(-1)) sediment from Bizerte lagoon and (2) the responses of the nematode community upon an artificial spiking of a low dose anthracene (1 µg g(-1)). For that purpose sediment microcosms were incubated in laboratory for 40 days. Bioremediation techniques decreased the anthracene contamination, and interestingly, biodegradation were more efficient when anthracene was artificial supplied into the sediment suggesting that the addition of bioavailable anthracene stimulated the bacterial community to adjust towards a PAH-degrading community. Spiking with this low dose of anthracene provoked significant changes in the nematode community structure and abundance, with the elimination of specific species such as Mesacanthion diplechma, the decrease of the dominant species Oncholaimus campylocercoides and the increase in abundance of opportunistic species such as Spirinia parasitifera. This would suggest a low tolerance of the nematode community despite the presence of a weak anthracene contamination in the sediment that could have allow dominance of an anthracene tolerant nematode species. Anthracene toxicity was alleviated in biostimulation treatments, leading to a strong increase in nematode abundance, concomitantly with changes in the nematode community structure; Prochromadorella neapolitana became the most abundant species.


Subject(s)
Anthracenes/toxicity , Biodegradation, Environmental , Nematoda/drug effects , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Environmental Monitoring/methods , Geologic Sediments/chemistry
5.
Chemosphere ; 93(10): 2535-46, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24206831

ABSTRACT

Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30 days. Bioremediation treatments, nutrient amendment and addition of a hydrocarbon-degrading bacterium, were also tested to enhance PAH biodegradation. Results clearly show the important role of meiofauna as structuring factor for bacterial communities with significant changes observed in the molecular fingerprints. However, these structural changes were not concomitant with changes in biomass or function. PAH contamination had a severe impact on total meiofaunal abundance with a strong decrease of nematodes and the complete disappearance of polychaetes and copepods. In contrast, correspondence analysis, based on T-RFLP fingerprints, showed that contamination by PAH resulted in small shifts in microbial composition, with or without meiofauna, suggesting a relative tolerance of bacteria to the PAH cocktail. The PAH bioremediation treatments were highly efficient with more than 95% biodegradation. No significant difference was observed in presence or absence of meiofauna. Nutrient addition strongly enhanced bacterial and meiofaunal abundances as compared to control and contaminated microcosms, as well as inducing important changes in the bacterial community structure. Nutrients thus were the main structural factor in shaping bacterial community composition, while the role of meiofauna was less evident.


Subject(s)
Bacteria/drug effects , Ecosystem , Water Microbiology , Water Pollutants, Chemical/toxicity , Bacteria/classification , Biodegradation, Environmental , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Polycyclic Aromatic Hydrocarbons/toxicity
6.
Environ Sci Pollut Res Int ; 20(1): 300-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22441697

ABSTRACT

PURPOSE: The main goals of this study were to investigate (1) the behavior of microbial communities in response to low-dose bioavailable anthracene addition in lightly contaminated sediment from Bizerte Lagoon and (2) the effects of bioremediation treatments on microbial biomass, activity, and community structure. METHODS: Sediment microcosms amended with 1 ppm anthracene were incubated in triplicate during 30 days. Biostimulation (addition of nitrogen and phosphorus fertilizer) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Sediment oxygen consumption was measured with oxygen microelectrodes. Bacterial community structure was assessed by molecular fingerprints (terminal restriction fragment length polymorphism; T-RFLP) analysis. RESULTS: Anthracene contamination resulted in a significant reduction of bacterial abundance with an impact on cell integrity. Concomitantly, sediment oxygen consumption was strongly inhibited. Correspondence analysis on T-RFLP data indicated that bacterial community structures from anthracene-contaminated microcosms were different from that of the control. Interestingly, the changes observed in microbial biomass, structure, and activities as a result of anthracene contamination were not alleviated even with the use of biostimulation and combination of biostimulation and bioaugmentation strategy for anthracene bioremediation. Nevertheless, both treatment methods resulted in different community structures relative to the contaminated and control microcosms with the appearance of distinct populations. CONCLUSION: Anthracene spiking severely affected microbial communities, suggesting dominance of nontolerant populations in this lightly-contaminated sediment. Although biostimulation and/or bioaugmentation treatments did not alleviate the anthracene toxic effects, the changes observed in microbial population and structure suggest that the proposed treatments might be promising to promote bacterial growth. Further works are still required to propose a more efficient strategy to stimulate biodegradation that takes into account the complex interactions between species for resource access.


Subject(s)
Anthracenes/analysis , Bacteria/growth & development , Geologic Sediments/chemistry , Water Microbiology , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Biomass , Fertilizers , Geologic Sediments/microbiology , Polymorphism, Restriction Fragment Length , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...