Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 51: 138-144, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30385243

ABSTRACT

The sonochemical processing of nanomaterials in a solution is well established and has been advantageously used for a variety of nanomaterials and morphologies thereof. In general, high energy and high frequency ultrasound is applied to a solution containing the ionic species of the elements to be reduced as well as a certain amount of reducing chemicals. For further applications such as catalysis washing, filtering, dispersion and mounting on or mixing in a substrate are necessary. A sonochemical processing of nanomaterials directly on a substrate could make all these steps obsolete. Herein we show that noble metal and nanoalloy nanoparticles (NPs) can directly be processed on nanocarbon and titanium nitride surfaces using a simple ultrasound laboratory cleaner in aqueous solutions that are free from any reducing chemicals. The process is demonstrated on Au-NPs and nanoalloys of AuPd and PdPt which form a dense distribution on the substrate surface. To illustrate the catalytic activity of the NPs, the electrocatalytic performance of one AuPd-nanoalloy is demonstrated. The results are discussed in terms of reduction phenomena occurring at the interface between the ultrasonic cavitation and the substrate. We think that these reduction phenomena are mediated by the formation of reducing radicals at the substrate surface that are in turn driven by OH radicals from water sonolysis. Electrochemical current measurement at 0 V seem to support the existence of reducing currents during measurements under chopped ultrasound in an aqueous solution of HAuCl4 in comparison to measurements in water.

2.
Langmuir ; 33(27): 6739-6750, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28605897

ABSTRACT

We explore the suitability of nanocomposite thin films based on laponite nanomaterial and grafted antiadhesive polymers as transparent nonfouling surfaces. For this purpose, two polymers were chosen: a linear poly(ethylene glycol) (PEG) silane, 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane), and thermoresponsive poly(oligo ethylene glycol)-methyl ether-methacrylate (POEGMA) brushes. PEG silane was grafted on the laponite nanoparticles in solution yielding homogeneous and transparent thin films via a dip coating procedure on glass and silicon substrates. POEGMA was grafted on laponite-(3-Aminopropyl)trimethoxysilane (APTMS) nanocomposite films that were processed similarly to PEG-silane using atom transfer radical polymerization (ATRP). Film characterization with, among others, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) attests to successful grafting of the polymers to the laponite nanoparticles. In particular, evidence of basal plane expansion of laponite with increasing silane concentration are obtained using XRD, while patent morphological changes are revealed with AFM. The results are discussed in terms of the different grafting sites on laponite and compared with literature. While LP-PEG-silane is easily applied to a surface from a precursor solution via a dip coating procedure LP-APTMS-OEGMA requires lots more chemicals, a thorough control of reaction parameters, and longer reaction time in order to generate films with the desirable properties. We therefore also addressed the antifouling properties of the films. These were tested together with control samples of bare glass and laponite thin films for 30 days in an algae container. More tests were conducted with fibroblast cell cultures. Our preliminary results show that grafting of PEG containing polymers and polymer brushes alters the properties of the laponite films from fouling to nonfouling surfaces. As a first estimate, the adhesion of particles (diatoms, algae, etc.) to surfaces is reduced by approximately 85% in the case of LP-PEG-silane and up to 92% in the case of LP-APTMS-POEGMA, in comparison to the control surfaces. Furthermore, practically no cell adhesion on such surfaces could be observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...