Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Parasit Vectors ; 16(1): 158, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147691

ABSTRACT

BACKGROUND: Urbanization can be a significant contributor to the spread of invasive mosquito vector species, and the diseases they carry, as urbanized habitats provide access to a great density of food resources (humans and domestic animals) and offer abundant breeding sites for these vectors. Although anthropogenic landscapes are often associated with the presence of invasive mosquito species, we still have little understanding about the relationships between some of these and the built environment. METHODS: This study explores the association between urbanization level and the occurrence of invasive Aedes species, specifically Aedes albopictus, Aedes japonicus, and Aedes koreicus, in Hungary, using data from a community (or citizen) science program undertaken between 2019 and 2022. RESULTS: The association between each of these species and urbanized landscapes within an extensive geographic area was found to differ. Using the same standardized approach, Ae. albopictus showed a statistically significant and positive relationship with urbanization, whereas Ae. japonicus and Ae. koreicus did not. CONCLUSIONS: The findings highlight the importance of community science to mosquito research, as the data gathered using this approach can be used to make qualitative comparisons between species to explore their ecological requirements.


Subject(s)
Aedes , Animals , Humans , Hungary , Introduced Species , Urbanization , Ecosystem , Mosquito Vectors
3.
PLoS One ; 17(8): e0269880, 2022.
Article in English | MEDLINE | ID: mdl-35913994

ABSTRACT

BACKGROUND: The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species' biology, behavior, and dispersal patterns were poorly investigated to date. METHODOLOGY/PRINCIPAL FINDINGS: To understand the species' population relationships and dispersal patterns within Europe, a fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected. CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of 'Single Nucleotide Polymorphism' markers. Considering its public health importance, it is crucial to further investigate the species' population genetic dynamic, including a larger sampling and additional genomic markers.


Subject(s)
Aedes , Aedes/genetics , Animals , Disease Vectors , Europe , Genetic Variation , Introduced Species , Mosquito Vectors/genetics
4.
Parasit Vectors ; 11(1): 456, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081963

ABSTRACT

BACKGROUND: Uranotaenia unguiculata Edwards, 1913 is a species of mosquito (Diptera: Culicidae) native to central Europe. Recently a novel lineage of the West Nile virus (WNV-lineage 4c) was identified in pools of adult female Ur. unguiculata. To increase the body of knowledge about this species, various trapping methods were evaluated to determine the most efficient method for capturing adult female Ur. unguiculata. RESULTS: Sound traps collected equivalent numbers of female Ur. unguiculata as low-hanging light-baited downdraft traps. Hosts were identified as Pelophylax lessonae and P. ridibunda (Anura: Ranidae) species group frogs from the blood found in engorged females. In addition to confirming infection by WNV-lin. 4c, a potentially integrated flavivirus sequence was detected in male mosquitoes. A novel Alphamesonivirus 1 (Nidovirales: Mesoniviridae) was found to be widespread in the Ur. unguiculata population and is herein described. CONCLUSIONS: Efficient collection methods for Ur. unguiculata for arbovirus surveillance reflect mosquito questing behavior. Uranotaenia unguiculata targets frog species which call from the water, and it is likely that the novel WNV-lin. 4c is maintained in a frog-mosquito transmission cycle. The improved trapping methods listed here will assist future studies of the vector status of Ur. unguiculata for WNV and other arboviruses.


Subject(s)
Amphibians , Culicidae/physiology , Feeding Behavior , Sound , Viruses/classification , Animals , Culicidae/virology , Female , Male , Virus Physiological Phenomena
5.
Parasit Vectors ; 10(1): 449, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28962629

ABSTRACT

BACKGROUND: Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. RESULTS: Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9-7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8-33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. CONCLUSIONS: Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region.


Subject(s)
Bird Diseases/virology , Culex/virology , Falconiformes/virology , Insect Vectors/virology , West Nile Fever/veterinary , West Nile virus/physiology , Animals , Antibodies, Viral/blood , Bird Diseases/blood , Bird Diseases/transmission , Culex/physiology , Falconiformes/blood , Feeding Behavior , Female , Host-Pathogen Interactions , Insect Vectors/physiology , Male , Seroepidemiologic Studies , West Nile Fever/transmission , West Nile Fever/virology , West Nile virus/genetics , West Nile virus/isolation & purification
6.
Elife ; 42015 Mar 11.
Article in English | MEDLINE | ID: mdl-25760081

ABSTRACT

Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed.


Subject(s)
Caenorhabditis elegans/drug effects , Interneurons/drug effects , Nerve Net/drug effects , Oxygen/pharmacology , Sensory Receptor Cells/drug effects , Animals , Animals, Genetically Modified , Arousal/genetics , Behavior, Animal , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Gap Junctions/drug effects , Gap Junctions/metabolism , Gene Expression Regulation , Interneurons/cytology , Interneurons/metabolism , Ion Transport , Locomotion/genetics , Nerve Net/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Signal Transduction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
7.
J Neurosci ; 34(50): 16726-38, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25505325

ABSTRACT

Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca(2+) responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Dendrites/enzymology , Globins/physiology , Guanylate Cyclase/metabolism , Oxygen/metabolism , Programmed Cell Death 1 Receptor/physiology , Protein Prenylation/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Soluble Guanylyl Cyclase
8.
Vector Borne Zoonotic Dis ; 14(9): 648-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25229703

ABSTRACT

West Nile virus (WNV) is a widely distributed mosquito-borne flavivirus. WNV strains are classified into several genetic lineages on the basis of phylogenetic differences. Whereas lineage 1 viruses are distributed worldwide, lineage 2 WNV was first detected outside of Africa in Hungary in 2004. Since then, WNV-associated disease and mortality in animal and human hosts have been documented periodically in Hungary. After the first detection of WNV from a pool of Culex pipiens mosquitoes in 2010, samples were collated from several sources and tested in a 2-year monitoring program. Collection areas were located in the Southern Transdanubium, in northeastern Hungary, in eastern Hungary, and in southeastern Hungary. During the 2 years, 23,193 mosquitoes in 645 pools were screened for WNV virus presence with RT-PCR. Three pools were found positive for WNV in 2011 (one pool of Ochlerotatus annulipes collected in Fényeslitke in June, one pool of Coquillettidia richiardii collected in Debrecen, Fancsika-tó, in July, and one pool of Cx. pipiens captured near Red-Footed Falcon colonies at Kardoskút in September). The minimal infection rate (MIR=proportion of infected mosquitoes per 1000 mosquitoes) of all mosquito pools was 0.25, whereas the MIR of infected species was 2.03 for O. annulipes, 0.63 for C. richiardii, and 2.70 for C.x pipiens. Molecular data have demonstrated that the same lineage 2 WNV strain has circulated in wild birds, horses, humans, and mosquitoes in Hungary since 2004. Mosquito-based surveillance successfully complemented the ongoing, long-term passive surveillance system and it was useful for the early detection of WNV circulation.


Subject(s)
Culicidae/virology , Insect Vectors/virology , West Nile Fever/epidemiology , West Nile virus/isolation & purification , Animals , Female , Geography , Humans , Hungary/epidemiology , Male , West Nile Fever/transmission , West Nile Fever/virology , West Nile virus/genetics , Zoonoses
9.
Proc Natl Acad Sci U S A ; 110(35): E3301-10, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940325

ABSTRACT

cGMP signaling is widespread in the nervous system. However, it has proved difficult to visualize and genetically probe endogenously evoked cGMP dynamics in neurons in vivo. Here, we combine cGMP and Ca(2+) biosensors to image and dissect a cGMP signaling network in a Caenorhabditis elegans oxygen-sensing neuron. We show that a rise in O2 can evoke a tonic increase in cGMP that requires an atypical O2-binding soluble guanylate cyclase and that is sustained until oxygen levels fall. Increased cGMP leads to a sustained Ca(2+) response in the neuron that depends on cGMP-gated ion channels. Elevated levels of cGMP and Ca(2+) stimulate competing negative feedback loops that shape cGMP dynamics. Ca(2+)-dependent negative feedback loops, including activation of phosphodiesterase-1 (PDE-1), dampen the rise of cGMP. A different negative feedback loop, mediated by phosphodiesterase-2 (PDE-2) and stimulated by cGMP-dependent kinase (PKG), unexpectedly promotes cGMP accumulation following a rise in O2, apparently by keeping in check gating of cGMP channels and limiting activation of Ca(2+)-dependent negative feedback loops. Simultaneous imaging of Ca(2+) and cGMP suggests that cGMP levels can rise close to cGMP channels while falling elsewhere. O2-evoked cGMP and Ca(2+) responses are highly reproducible when the same neuron in an individual animal is stimulated repeatedly, suggesting that cGMP transduction has high intrinsic reliability. However, responses vary substantially across individuals, despite animals being genetically identical and similarly reared. This variability may reflect stochastic differences in expression of cGMP signaling components. Our work provides in vivo insights into the architecture of neuronal cGMP signaling.


Subject(s)
Biosensing Techniques , Caenorhabditis elegans/metabolism , Cyclic GMP/metabolism , Gases/analysis , Oxygen/metabolism , Animals , Caenorhabditis elegans/genetics , Calcium/metabolism , Enzyme Activation , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Synapses/metabolism
10.
Nat Neurosci ; 15(4): 581-91, 2012 Mar 04.
Article in English | MEDLINE | ID: mdl-22388961

ABSTRACT

Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that Caenorhabditis elegans O(2)-sensing neurons are tonic receptors that continuously signal ambient [O(2)] to set the animal's behavioral state. Sustained signaling relied on a Ca(2+) relay involving L-type voltage-gated Ca(2+) channels, the ryanodine and the inositol-1,4,5-trisphosphate receptors. Tonic activity evoked continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O(2)]. Sustained O(2) receptor signaling was propagated to downstream neural circuits, including the hub interneuron RMG. O(2) receptors evoked similar locomotory states at particular O(2) concentrations, regardless of previous d[O(2)]/dt. However, a phasic component of the URX receptors' response to high d[O(2)]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enabled transient reorientation movements shaped by d[O(2)]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Chemoreceptor Cells/physiology , Motor Activity/physiology , Nerve Net/physiology , Oxygen/physiology , Signal Transduction/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Calcium Signaling/physiology
11.
Neuron ; 69(6): 1099-113, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21435556

ABSTRACT

Homeostatic control of body fluid CO(2) is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO(2). We show that C. elegans temperature, O(2), and salt-sensing neurons are also CO(2) sensors mediating CO(2) avoidance. AFD thermosensors respond to increasing CO(2) by a fall and then rise in Ca(2+) and show a Ca(2+) spike when CO(2) decreases. BAG O(2) sensors and ASE salt sensors are both activated by CO(2) and remain tonically active while high CO(2) persists. CO(2)-evoked Ca(2+) responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O(2) responses also contribute to BAG CO(2) responses. AFD and BAG neurons together stimulate turning when CO(2) rises and inhibit turning when CO(2) falls. Our results show that C. elegans senses CO(2) using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO(2).


Subject(s)
Behavior, Animal/physiology , Carbon Dioxide , Homeostasis/physiology , Oxygen , Sensory Receptor Cells/physiology , Sodium Chloride , Animals , Caenorhabditis elegans , Calcium/metabolism , Ion Channel Gating/physiology , Motor Activity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...