Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 29(5): 052920, 2024 May.
Article in English | MEDLINE | ID: mdl-38495527

ABSTRACT

Significance: The interference-holographic method of phase scanning of fields of scattered laser radiation is proposed. The effectiveness of this method for the selection of variously dispersed components is demonstrated. This method made it possible to obtain polarization maps of biological tissues at a high level of depolarized background. The scale-selective analysis of such maps was used to determine necrotic changes in the optically anisotropic architectonics of biological tissues. Objective: Development and experimental approbation of layered phase polarimetry of repeatedly scattered fields in diffuse layers of biological tissues. Application of scale-selective processing of the found coordinate distributions of polarization states in various phase sections of object fields. Determination of criteria (markers) for histological differential diagnosis of the causes of necrotic changes in optical anisotropy of biological tissues. Approach: We used a synthesis of three instrumental and analytical methods. Polarization-interference registration of laser radiation scattered by a sample of biological tissue. Digital holographic reconstruction and layered phase scanning of distributions of complex amplitudes of the object field. Analytical determination of polarization maps of various phase cross-sections of repeatedly scattered radiation. Application of wavelet analysis of the distributions of polarization states in the phase plane of a single scattered component of an object field. Determination of criteria (markers) for differential diagnosis of necrotic changes in biological tissues with different morphological structure. Two cases are considered. The first case is the myocardium of those who died as a result of coronary heart disease and acute coronary insufficiency. The second case is lung tissue samples of deceased with bronchial asthma and fibrosis. Results: A method of polarization-interference mapping of diffuse object fields of biological tissues has been developed and experimentally implemented. With the help of digital holographic reconstruction of the distributions of complex amplitudes, polarization maps in various phase sections of a diffuse object field are found. The wavelet analysis of azimuth and ellipticity distributions of polarization in the phase plane of a single scattered component of laser radiation is used. Scenarios for changing the amplitude of the wavelet coefficients for different scales of the scanning salt-like MHAT function are determined. Statistical moments of the first to fourth orders are determined for the distributions of the amplitudes of the wavelet coefficients of the azimuth maps and the ellipticity of polarization. As a result, diagnostic markers of necrotic changes in the myocardium and lung tissue were determined. The statistical criteria found are the basis for determining the accuracy of their differential diagnosis of various necrotic states of biological tissues. Conclusions: Necrotic changes caused by "coronary artery disease-acute coronary insufficiency" and "asthma-pulmonary fibrosis" were demonstrated by the method of wavelet differentiation with polarization interference with excellent accuracy.


Subject(s)
Holography , Lasers , Spectrum Analysis , Histological Techniques , Myocardium
2.
Sensors (Basel) ; 24(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475128

ABSTRACT

Our work uses a polarization matrix formalism to analyze and algorithmically represent optical anisotropy by open dehydration of blood plasma films. Analytical relations for Jones matrix reconstruction of optical birefringence maps of protein crystal networks of dehydrated biofluid films are found. A technique for 3D step-by-step measurement of the distributions of the elements of the Jones matrix or Jones matrix images (JMI) of the optically birefringent structure of blood plasma films (BPF) has been created. Correlation between JMI maps and corresponding birefringence images of dehydrated BPF and saliva films (SF) obtained from donors and prostate cancer patients was determined. Within the framework of statistical analysis of layer-by-layer optical birefringence maps, the parameters most sensitive to pathological changes in the structure of dehydrated films were found to be the central statistical moments of the 1st to 4th orders. We physically substantiated and experimentally determined the sensitivity of the method of 3D polarization scanning technique of BPF and SF preparations in the diagnosis of endometriosis of uterine tissue.


Subject(s)
Optical Devices , Female , Humans , Anisotropy , Microscopy, Polarization/methods , Birefringence , Proteins
3.
J Biophotonics ; 17(3): e202300372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37915304

ABSTRACT

We aimed developing and experimentally validating methods for 3D scale-selective polarimetry of multiply scattered fields in diffuse myocardium layers for mechanical myocardial injury prescription histological differential diagnostics. We used the synthesis of diffuse object field polarization-interference registration and polarization-inhomogeneous field digital holographic reconstruction and layer-by-layer complex amplitudes distributions The method for selection single and diffuse object field multiply scattered components polarization maps is proposed. The conditions for eliminating the distorting influence of a depolarized background high level are found. On the basis of еру object field single scattered component polarization maps a large-scale selective wavelet analysis the criteria (markers) for mechanical myocardial injury different prescription diagnosis was determinate. Excellent accuracy mechanical injury myocardium necrotic changes with different duration using polarization-interference wavelet differentiation were achieved.


Subject(s)
Heart , Myocardium , Myocardium/pathology , Heart/diagnostic imaging
4.
Appl Opt ; 51(10): C38-43, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22505109

ABSTRACT

The paper presents a new method for determining the degree of coherence of superposing plane linearly polarized waves converging at the angle of 90°. The spatial modulation of polarization, which causes the spatial modulation of the averaged values of the Poynting vector, presets the modulation of the volume energy density. Such an inhomogeneous optical field can affect nano-sized particles randomly caught in this field. The paper shows that the maximum velocity of "trapping" the particles into the regions of maximum averaged values of the Poynting vector determines the degree of coherence of interacting waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...