Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842936

ABSTRACT

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.

2.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1411-1424, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726169

ABSTRACT

The SorC/DeoR family is a large family of bacterial transcription regulators that are involved in the control of carbohydrate metabolism and quorum sensing. To understand the structural basis of DNA recognition, structural studies of two functionally characterized SorC/DeoR family members from Bacillus subtilis were performed: the deoxyribonucleoside regulator bsDeoR and the central glycolytic genes regulator bsCggR. Each selected protein represents one of the subgroups that are recognized within the family. Crystal structures were determined of the N-terminal DNA-binding domains of bsDeoR and bsCggR in complex with DNA duplexes representing the minimal operator sequence at resolutions of 2.3 and 2.1 Å, respectively. While bsDeoRDBD contains a homeodomain-like HTH-type domain, bsCggRDBD contains a winged helix-turn-helix-type motif. Both proteins form C2-symmetric dimers that recognize two consecutive major grooves, and the protein-DNA interactions have been analyzed in detail. The crystal structures were used to model the interactions of the proteins with the full DNA operators, and a common mode of DNA recognition is proposed that is most likely to be shared by other members of the SorC/DeoR family.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...