Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 325: 100-10, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27038748

ABSTRACT

Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. NG108-15 cell line is a reliable model of cholinergic neuronal cells. These cells differentiate to a neuronal phenotype due to the dibutyryl cAMP (dbcAMP) treatment. We have shown that a slow sulfide donor - GYY4137 - can also act as a differentiating factor in NG108-15 cell line. Calcium is an unavoidable ion required in NG108-15 cell differentiation by both, dbcAMP and GYY4137, since cultivation in EGTA completely prevented differentiation of these cells. In this work we focused primarily on the role of reticular calcium in the process of NG108-15 cell differentiation. We have found that dbcAMP and also GYY4137 decreased reticular calcium concentration by different mechanisms. GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.


Subject(s)
Bucladesine/administration & dosage , Cell Differentiation/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Morpholines/administration & dosage , Neurons/drug effects , Neurons/physiology , Organothiophosphorus Compounds/administration & dosage , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Hydrogen Sulfide/administration & dosage , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism
2.
Bratisl Lek Listy ; 116(5): 289-95, 2015.
Article in English | MEDLINE | ID: mdl-25924637

ABSTRACT

With the increasing number of paediatric cancer patients and with their prolonged survival, the evidence of a number of serious complications induced by anticancer therapy is rising. Osteonecrosis (ON) of bone is one of these treatment-related effects with a multifactorial pathogenesis. In the past few years, several polymorphisms of candidate genes with possible role in development of this disorder were studied.We summarized potential risk factors leading to increased susceptibility to osteonecrosis of bone development in cancer patients during childhood and to present current knowledge in the field of genetic aspects of this condition (Ref. 86).


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplasms/therapy , Osteonecrosis/genetics , Plasminogen Activator Inhibitor 1/genetics , Vascular Endothelial Growth Factor A/genetics , Adrenal Cortex Hormones/adverse effects , Antineoplastic Agents/adverse effects , Catalase/genetics , Child , Genetic Predisposition to Disease , Graft vs Host Disease/complications , Humans , Neoplasms/complications , Nitric Oxide Synthase/genetics , Osteonecrosis/etiology , Radiotherapy/adverse effects , Risk Factors
3.
Acta Physiol (Oxf) ; 208(4): 350-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23582047

ABSTRACT

AIM: To investigate an interaction between the calcium and sulphide signalling pathways, particularly effects of the slow H2 S release donor morpholin-4-ium-4-methoxyphenyl-(morpholino)-phosphinodithioate (GYY4137) on the expression of inositol 1,4,5-trisphosphate receptors (IP3 R) with the possible impact on the apoptosis induction in HeLa cells. METHODS: Gene expression, Western blot analysis, apoptosis determination by Annexin-V-FLUOS and drop in mitochondrial membrane potential by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC1) and immunofluorescence were used to determine differences in control and GYY4137-treated HeLa cells. RESULTS: In HeLa cell line, GYY4137 (10 µm) up-regulated expression of the IP3 R1 and IP3 R2, but not IP3 R3 on both mRNA and protein levels. Concurrently, cytosolic calcium increased and reticular calcium was depleted in concentration-dependent manner, partially by the involvement of IP3 R. Depletion of calcium from reticulum was accompanied by increase in endoplasmic reticulum (ER) stress markers, such as X-box, CHOP and ATF4, thus pointing to the development of ER stress due to GYY4137 treatment. Also, GYY4137 treatment of HeLa cells increased the number of apoptotic cells. CONCLUSION: These results suggest an involvement of H2 S in both IP3 -induced calcium signalling and induction of apoptosis, possibly through the activation of ER stress.


Subject(s)
Apoptosis/physiology , Calcium Signaling/physiology , Hydrogen Sulfide/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Up-Regulation , HeLa Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Morpholines , Organothiophosphorus Compounds
4.
Neoplasma ; 52(6): 435-40, 2005.
Article in English | MEDLINE | ID: mdl-16284686

ABSTRACT

There is an increasing evidence supporting the cancer stem cell hypothesis. Normal stem cells in the adult organism are responsible for tissue renewal and repair of aged or damaged tissue. A substantial characteristic of stem cells is their ability for self-renewal without loss of proliferation capacity with each cell division. The stem cells are immortal, and rather resistant to action of drugs. They are able to differentiate and form specific types of tissue due to the influence of microenvironmental and some other factors. Stem cells divide asymmetrically producing two daughter cells -- one is a new stem cell and the second is progenitor cell, which has the ability for differentiation and proliferation, but not the capability for self-renewal. Cancer stem cells are in many aspects similar to the stem cells. It has been proven that tumor cells are heterogeneous comprising rare tumor initiating cells and abundant non-tumor initiating cells. Tumor initiating cells -- cancer stem cells have the ability of self-renewal and proliferation, are resistant to drugs, and express typical markers of stem cells. It is not clear whether cancer stem cells originate from normal stem cells in consequence of genetic and epigenetic changes and/or by redifferentiation from somatic tumor cells to the stem-like cells. Probably both mechanisms are involved in the origin of cancer stem cells. Dysregulation of stem cell self-renewal is a likely requirement for the development of cancer. Isolation and identification of cancer stem cells in human tumors and in tumor cell lines has been successful. To date, the existence of cancer stem cells has been proven in acute and chronic myeloid leukemia, in breast cancer, in brain tumors, in lung cancer and gastrointestinal tumors. Cancer stem cell model is also consistent with some clinical observations. Although standard chemotherapy kills most cells in a tumor, cancer stem cells remain viable. Despite the small number of such cells, they might be the cause of tumor recurrence, sometimes many years after the "successful" treatment of primary tumor. Growth of metastases in distinct areas of body and their cellular heterogeneity might be consequence of cancer stem cell differentiation and/or dedifferentiation and asymmetric division of cancer stem cells. Further characterization of cancer stem cells is needed in order to find ways to destroy them, which might contribute significantly to the therapeutic management of malignant tumors.


Subject(s)
Neoplastic Stem Cells , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...