Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(18): 5164-70, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21835615

ABSTRACT

The proteolytic enzyme ß-secretase (BACE1) plays a central role in the synthesis of the pathogenic ß-amyloid in Alzheimer's disease. SAR studies of the S2' region of the BACE1 ligand binding pocket with pyrazolyl and thienyl P2' side chains are reported. These analogs exhibit low nanomolar potency for BACE1, and demonstrate >50- to 100-fold selectivity for the structurally related aspartyl proteases BACE2 and cathepsin D. Small groups attached at the nitrogen of the P2' pyrazolyl moiety, together with the P3 pyrimidine nucleus projecting into the S3 region of the binding pocket, are critical components to ligand's potency and selectivity. P2' thiophene side chain analogs are highly potent BACE1 inhibitors with excellent selectivity against cathepsin D, but only modest selectivity against BACE2. The cell-based activity of these new analogs tracked well with their increased molecular binding with EC(50) values of 0.07-0.2 µM in the ELISA assay for the most potent analogs.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydantoins/pharmacology , Pyrazoles/chemistry , Thiophenes/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydantoins/chemical synthesis , Hydantoins/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 20(22): 6597-605, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20880704

ABSTRACT

The identification of small molecule aminohydantoins as potent and selective human ß-secretase inhibitors is reported. These analogs exhibit good brain permeability (40-70%), low nanomolar potency for BACE1, and demonstrate >100-fold selectivity for the structurally related aspartyl proteases cathepsin D, renin and pepsin. Alkyl and alkoxy groups at the meta-position of the P1 phenyl, which extend toward the S3 region of the enzyme, have contributed to the ligand's reduced affinity for the efflux transporter protein P-gp, and decreased topological polar surface area, thus resulting in enhanced brain permeability. A fluorine substitution at the para-position of the P1 phenyl has contributed to 100-fold decrease of CYP3A4 inhibition and enhancement of compound metabolic stability. The plasma and brain protein binding properties of these new analogs are affected by substitutions at the P1 phenyl moiety. Higher compound protein binding was observed in the brain than in the plasma. Two structurally diverse potent BACE1 inhibitors (84 and 89) reduced 30% plasma Aß40 in the Tg2576 mice in vivo model at 30 mg/kg p.o..


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Brain/metabolism , Enzyme Inhibitors/chemical synthesis , Hydantoins/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydantoins/chemistry , Hydantoins/pharmacology , Permeability
3.
Bioorg Med Chem Lett ; 20(7): 2068-73, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20223661

ABSTRACT

The proteolytic enzyme beta-secretase (BACE1) plays a central role in the synthesis of the pathogenic beta-amyloid in Alzheimer's disease. Recently, we reported small molecule acylguanidines as potent BACE1 inhibitors. However, many of these acylguanidines have a high polar surface area (e.g. as measured by the topological polar surface area or TPSA), which is unfavorable for crossing the blood-brain barrier. Herein, we describe the identification of the 2-aminopyridine moiety as a bioisosteric replacement of the acylguanidine moiety, which resulted in inhibitors with lower TPSA values and superior brain penetration. X-ray crystallographic studies indicated that the 2-aminopyridine moiety interacts directly with the catalytic aspartic acids Asp32 and Asp228 via a hydrogen-bonding network.


Subject(s)
Alzheimer Disease/drug therapy , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Alzheimer Disease/enzymology , Aminopyridines/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 20(3): 1237-40, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20042333

ABSTRACT

Using a focused screen of biogenic amine compounds we identified a novel series of H(3)R antagonists. A preliminary SAR study led to reduction of MW while increasing binding affinity and potency. Optimization of the physical properties of the series led to (S)-6n, with improved brain to plasma exposure and efficacy in both water intake and novel object recognition models.


Subject(s)
Benzamides/chemistry , Benzimidazoles/chemistry , Histamine H3 Antagonists/chemistry , Pyrrolidines/chemistry , Receptors, Histamine H3 , Animals , Benzamides/blood , Benzamides/metabolism , Benzimidazoles/blood , Benzimidazoles/metabolism , Caco-2 Cells , Cell Line , Histamine H3 Antagonists/blood , Histamine H3 Antagonists/metabolism , Humans , Indoles/blood , Indoles/chemistry , Indoles/metabolism , Protein Binding , Pyrrolidines/blood , Pyrrolidines/metabolism , Rats , Receptors, Histamine H3/blood , Receptors, Histamine H3/metabolism
5.
Bioorg Med Chem Lett ; 17(19): 5353-6, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17761418

ABSTRACT

A series of thiophene-substituted acylguanidines were designed from a pyrrole substituted acylguanidine HTS lead. This template allowed a greater flexibility, through differential Suzuki couplings, to explore the binding site of BACE1 and to enhance the inhibitory potencies. This exploration provided a 25-fold enhancement in potency to yield compound 10a, which was 150 nM in a BACE1 FRET assay.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Guanidines/chemical synthesis , Guanidines/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Crystallography, X-Ray , Drug Design , Indicators and Reagents , Models, Molecular , Pyrroles/chemistry , Structure-Activity Relationship
6.
Curr Top Med Chem ; 6(2): 103-11, 2006.
Article in English | MEDLINE | ID: mdl-16454762

ABSTRACT

The discovery of novel intervention points in the inflammatory pathway has been a focus of drug development in recent years. We have identified pathway selective ligands for the estrogen receptor (ER) that inhibit NF-kappaB mediated inflammatory gene expression causing a reduction of cytokines, chemokines, adhesion molecules and inflammatory enzymes. SAR development of a series of 4-(Indazol-3-yl)-phenols has led to the identification of WAY-169916 an orally active non-steroidal ligand with the potential use in the treatment of inflammatory diseases without the classical proliferative effects associated with non-selective estrogens.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Inflammation/drug therapy , Inflammation/immunology , Pyrazoles/therapeutic use , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/immunology , Chronic Disease , Humans , Ligands , Molecular Structure , Structure-Activity Relationship
7.
J Med Chem ; 47(26): 6435-8, 2004 Dec 16.
Article in English | MEDLINE | ID: mdl-15588074

ABSTRACT

Pathway-selective ligands for the estrogen receptor (ER) inhibit NF-kappaB-mediated inflammatory gene expression causing a reduction of cytokines, chemokines, adhesion molecules, and inflammatory enzymes. SAR development of a series of 4-(indazol-3-yl)phenols has led to the identification of WAY-169916 an orally active nonsteroidal ligand with the potential use in the treatment of rheumatoid arthritis without the classical proliferative effects associated with estrogens.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Arthritis, Rheumatoid/drug therapy , Indazoles/chemical synthesis , Phenols/chemical synthesis , Receptors, Estrogen/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cell Line , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/drug effects , Estrogen Receptor beta/metabolism , Humans , Indazoles/chemistry , Indazoles/pharmacology , Ligands , Mice , Mice, Inbred C57BL , Models, Molecular , NF-kappa B/biosynthesis , NF-kappa B/genetics , Phenols/chemistry , Phenols/pharmacology , Rats , Rats, Inbred Lew , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 12(20): 2957-61, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12270183

ABSTRACT

The synthesis and SAR of a series of human beta3 adrenoreceptor agonists based on a template derived from a common pharmacophore coupled with 4-aminomethylpiperidine is described. Potent and selective agents were identified such as 26 that was in vitro active in CHO cells expressing human beta3-AR (EC50=49 nM, IA=1.1), and in vivo active in a transgenic mouse model.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/chemical synthesis , Adrenergic beta-Agonists/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Animals , CHO Cells , Cricetinae , Humans , Indicators and Reagents , Mice , Mice, Transgenic , Receptors, Adrenergic, beta-3/genetics , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 12(20): 2963-7, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12270184

ABSTRACT

The synthesis and SAR of a series of beta3 adrenoreceptor agonists based on a novel template derived from 4-aminomethylpiperidine coupled with a common pharmacophore, arylethylamine, is described. This combination led to the identification of human beta3 adrenoreceptor agonists with in vivo activity in a transgenic mouse model.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/chemical synthesis , Adrenergic beta-Agonists/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Animals , CHO Cells , Cricetinae , Humans , Indicators and Reagents , Mice , Mice, Transgenic , Receptors, Adrenergic, beta-3/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...