Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 113(7): 1711-1725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570073

ABSTRACT

Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Dependovirus/genetics , Humans , Genetic Therapy/methods , Animals , Drug Compounding/methods , Genomics/methods
2.
Biophys J ; 120(16): 3329-3340, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34242592

ABSTRACT

Amyloid-ß (Aß) oligomers are toxic species implicated in Alzheimer's disease (AD). The prevailing hypothesis implicates a major role of membrane-associated amyloid oligomers in AD pathology. Our silica nanobowls (NB) coated with lipid-polymer have submicromolar affinity for Aß binding. We demonstrate that NB scavenges distinct fractions of Aßs in a time-resolved manner from amyloid precursor protein-null neuronal cells after incubation with Aß. At short incubation times in cell culture, NB-Aß seeds have aggregation kinetics resembling that of extracellular fraction of Aß, whereas at longer incubation times, NB-Aß seeds scavenge membrane-associated Aß. Aß aggregates can be eluted from NB surfaces by mechanical agitation and appear to retain their aggregation driving domains as seen in seeding aggregation experiments. These results demonstrate that the NB system can be used for time-resolved separation of toxic Aß species from biological samples for characterization and in diagnostics. Scavenging membrane-associated amyloids using lipid-functionalized NB without chemical manipulation has wide applications in the diagnosis and therapy of AD and other neurodegenerative diseases, cancer, and cardiovascular conditions.


Subject(s)
Alzheimer Disease , Silicon Dioxide , Amyloid , Amyloid beta-Peptides , Humans , Neurons
3.
Bioconjug Chem ; 31(12): 2697-2711, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33232129

ABSTRACT

Nonmesoporous Janus silica nanobowls (NBs) are unique in that they possess two different nonporous surfaces per particle for loading biological molecules and can thus be designed with multifunctional properties. Although silica NBs have been successfully employed for both targeted therapeutic and diagnostic applications, their ability to deliver DNA has not yet been fully explored. The purpose of this study was to design and develop an in vitro transfection agent that would exploit the distinct characteristics of the silica NB. First, we determined that the NB surface can be linked to either supercoiled cDNA plasmids or vectorless, linear cDNA constructs. Additionally, the linearized cDNA can be functionalized and chemisorbed on NBs to obtain a controlled release. Second, the successful transfection of cells studied was dependent on lipid coating of the NB (LNBs). Although both NBs and LNBs were capable of undergoing endocytosis, NBs appeared to remain within vesicles as shown by transmission electron microscopy (TEM). Third, fluorescence microscopy and Western blotting assays revealed that transfection of four different cell lines and acutely isolated rat sensory neurons with LNBs loaded with either linear or supercoiled cDNA constructs coding for the fluorescent protein, clover and tdTomato, resulted in protein expression. Fourth, two separate opioid receptor-ion channel signaling pathways were functionally reconstituted in HEK cells transfected with LNBs loaded with three separate cDNA constructs. Overall, these results lay the foundation for the use and further development of LNBs as in vitro transfection agents.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Capsules , DNA, Complementary/chemistry , DNA, Complementary/genetics , Drug Carriers/metabolism , Drug Liberation , Endocytosis , HEK293 Cells , Humans , Plasmids/genetics , Porosity , Silicon Dioxide/metabolism , Transfection
4.
Chem Rev ; 118(6): 3100-3120, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29419286

ABSTRACT

Plasmonic nanostructures are extensively used building blocks for engineering optical materials and device architectures. Plasmonic nanocomposites (pNCs) are an emerging class of materials that integrate these nanostructures into hierarchical and often multifunctional systems. These pNCs can be highly customizable by modifying both the plasmonic and matrix components, as well as by controlling the nano- to macroscale morphology of the composite as a whole. Assembly at the nanoscale plays a particularly important role in the design of pNCs that exhibit complex or responsive optical function. Due to their scalability and tunability, pNCs provide a versatile platform for engineering new plasmonic materials and for facile integration into optoelectronic device architectures. This review provides a comprehensive survey of recent achievements in pNC structure, design, fabrication, and optical function, along with some examples of their application in optoelectronics and sensing.

7.
Technology (Singap World Sci) ; 2(2): 118-132, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-25045721

ABSTRACT

Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. In vitro, ex vivo and in vivo experiments were performed to optimize the technology and protocols for the rapid detection (0.1-s integration time) of multiple cell-surface biomarkers with a miniature fiber-optic spectral-detection probe following a brief (5 min) topical application of SERS NPs on tissues. Furthermore, we demonstrate that the simultaneous detection and ratiometric quantification of targeted and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to nonspecific variations in NP concentrations.

8.
PLoS One ; 8(4): e62084, 2013.
Article in English | MEDLINE | ID: mdl-23620806

ABSTRACT

Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types ("flavors"), each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI), based on the output of a direct classical least-squares (DCLS) demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.


Subject(s)
Nanoparticles , Pathology, Molecular/methods , Spectrum Analysis, Raman/methods , Algorithms , Computer Simulation , Least-Squares Analysis , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...