Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Nature ; 629(8014): 1082-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38750354

ABSTRACT

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Subject(s)
Adrenal Glands , Biological Evolution , Paternal Behavior , Peromyscus , Animals , Female , Male , 20-alpha-Dihydroprogesterone/metabolism , Adrenal Glands/cytology , Adrenal Glands/enzymology , Adrenal Glands/metabolism , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , GADD45 Proteins/genetics , Genetic Variation , Hybridization, Genetic , Peromyscus/classification , Peromyscus/genetics , Peromyscus/physiology , Progesterone/metabolism , Quantitative Trait Loci , Social Behavior , Tenascin/genetics
2.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38658166

ABSTRACT

Aggression is a crucial behavior that impacts access to limited resources in different environmental contexts. Androgens synthesized by the gonads promote aggression during the breeding season. However, aggression can be expressed during the non-breeding season, despite low androgen synthesis by the gonads. The brain can also synthesize steroids ("neurosteroids"), including androgens, which might promote aggression during the non-breeding season. Male song sparrows, Melospiza melodia, are territorial year-round and allow the study of seasonal changes in the steroid modulation of aggression. Here, we quantified steroids following a simulated territorial intrusion (STI) for 10 min in wild adult male song sparrows during the breeding and non-breeding seasons. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined 11 steroids: pregnenolone, progesterone, corticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estriol, and estrone. Steroids were measured in blood and 10 microdissected brain regions that regulate social behavior. In both seasons, STI increased corticosterone in the blood and brain. In the breeding season, STI had no rapid effects on androgens or estrogens. Intriguingly, in the non-breeding season, STI increased testosterone and androstenedione in several behaviorally relevant regions, but not in the blood, where androgens remained non-detectable. Also in the non-breeding season, STI increased progesterone in the blood and specific brain regions. Overall, rapid socially modulated changes in brain steroid levels are more prominent during the non-breeding season. Brain steroid levels vary with season and social context in a region-specific manner and suggest a role for neuroandrogens in aggression during the non-breeding season.


Subject(s)
Aggression , Androgens , Brain , Seasons , Sparrows , Territoriality , Animals , Male , Aggression/physiology , Androgens/metabolism , Brain/metabolism , Sparrows/physiology , Sparrows/metabolism , Songbirds/metabolism
3.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38301739

ABSTRACT

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Subject(s)
Songbirds , Humans , Animals , Male , Songbirds/physiology , Corticosterone , Progesterone/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Testosterone , Androgens , Aggression/physiology , Estradiol/pharmacology , Pregnenolone/pharmacology
4.
PLoS One ; 18(10): e0289461, 2023.
Article in English | MEDLINE | ID: mdl-37816021

ABSTRACT

Steroids play a crucial role in modulating brain and behavior. While traditionally it is thought that the brain is a target of sex steroids produced in endocrine glands (e.g. gonads), the brain itself produces steroids, known as neurosteroids. Neurosteroids can be produced in regions involved in the regulation of social behaviors and may act locally to regulate social behaviors, such as reproduction and aggression. Our model species, the weakly electric fish Gymnotus omarorum, displays non-breeding aggression in both sexes. This is a valuable natural behavior to understand neuroendocrine mechanisms that differ from those underlying breeding aggression. In the non-breeding season, circulating sex steroid levels are low, which facilitates the study of neurosteroids. Here, for the first time in a teleost fish, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify a panel of 8 steroids in both plasma and brain to characterize steroid profiles in wild non-breeding adult males and females. We show that: 1) systemic steroid levels in the non-breeding season are similar in both sexes, although only males have detectable circulating 11-ketotestosterone, 2) brain steroid levels are sexually dimorphic, as females display higher levels of androstenedione, testosterone and estrone, and only males had detectable 11-ketotestosterone, 3) systemic androgens such as androstenedione and testosterone in the non-breeding season are potential precursors for neuroestrogen synthesis, and 4) estrogens, which play a key role in non-breeding aggression, are detectable in the brain (but not the plasma) in both sexes. These data are consistent with previous studies of G. omarorum that show non-breeding aggression is dependent on estrogen signaling, as has also been shown in bird and mammal models. Overall, our results provide a foundation for understanding the role of neurosteroids, the interplay between central and peripheral steroids and potential sex differences in the regulation of social behaviors.


Subject(s)
Electric Fish , Neurosteroids , Animals , Female , Male , Androstenedione , Chromatography, Liquid , Tandem Mass Spectrometry , Aggression/physiology , Gonadal Steroid Hormones , Testosterone , Steroids , Estrogens , Brain , Seasons , Mammals
5.
Neurosci Biobehav Rev ; 153: 105356, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567491

ABSTRACT

The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexibility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the mesocorticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens (estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how (neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the brain modulate higher-order cognition and executive functions.

7.
J Endocrinol ; 255(2): 61-74, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35938697

ABSTRACT

The profound programming effects of early life stress (ELS) on brain and behavior are thought to be primarily mediated by adrenal glucocorticoids (GCs). However, in mice, stressors are often administered between postnatal days 2 and 12 (PND2-12), during the stress hyporesponsive period (SHRP), when adrenal GC production is greatly reduced at baseline and in response to stressors. During the SHRP, specific brain regions produce GCs at baseline, but it is unknown if brain GC production increases in response to stressors. We treated mice at PND1 (pre-SHRP), PND5 (SHRP), PND9 (SHRP), and PND13 (post-SHRP) with an acute stressor (isoflurane anesthesia), vehicle control (oxygen), or neither (baseline). We measured a panel of progesterone and six GCs in the blood, hippocampus, cerebral cortex, and hypothalamus via liquid chromatography tandem mass spectrometry. At PND1, baseline corticosterone levels were high and did not increase in response to stress. At PND5, baseline corticosterone levels were very low, increases in brain corticosterone levels were greater than the increase in blood corticosterone levels, and stress had region-specific effects. At PND9, baseline corticosterone levels were low and increased similarly and moderately in response to stress. At PND13, blood corticosterone levels were higher than those at PND9, and corticosterone levels were higher in blood than in brain regions. These data illustrate the rapid and profound changes in stress physiology during neonatal development and suggest that neurosteroid production is a possible mechanism by which ELS has enduring effects on brain and behavior.


Subject(s)
Corticosterone , Isoflurane , Animals , Animals, Newborn , Brain , Glucocorticoids , Isoflurane/pharmacology , Mice , Stress, Psychological
8.
eNeuro ; 9(4)2022.
Article in English | MEDLINE | ID: mdl-35788106

ABSTRACT

Neuroestrogens are synthesized within the brain and regulate social behavior, learning and memory, and cognition. In song sparrows, Melospiza melodia, 17ß-estradiol (17ß-E2) promotes aggressive behavior, including during the nonbreeding season when circulating steroid levels are low. Estrogens are challenging to measure because they are present at very low levels, and current techniques often lack the sensitivity required. Furthermore, current methods often focus on 17ß-E2 and disregard other estrogens. Here, we developed and validated a method to measure four estrogens [estrone (E1), 17ß-E2, 17α-estradiol (17α-E2), estriol (E3)] simultaneously in microdissected songbird brain, with high specificity, sensitivity, accuracy, and precision. We used liquid chromatography tandem mass spectrometry (LC-MS/MS), and to improve sensitivity, we derivatized estrogens using 1,2-dimethylimidazole-5-sulfonyl-chloride (DMIS). The straightforward protocol improved sensitivity by 10-fold for some analytes. There is substantial regional variation in neuroestrogen levels in brain areas that regulate social behavior in male song sparrows. For example, the auditory area NCM, which has high aromatase levels, has the highest E1 and 17ß-E2 levels. In contrast, estrogen levels in blood are very low. Estrogen levels in both brain and circulation are lower in the nonbreeding season than in the breeding season. This technique will be useful for estrogen measurement in songbirds and potentially other animal models.


Subject(s)
Estrogens , Songbirds , Animals , Brain , Chromatography, Liquid , Estradiol , Male , Tandem Mass Spectrometry
9.
Behav Brain Res ; 433: 114000, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35817135

ABSTRACT

Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.


Subject(s)
Corticosterone , Lipopolysaccharides , Animals , Cognition/physiology , Cytokines , Humans , Interleukin-6 , Lipopolysaccharides/pharmacology , Male , Rats , Rats, Long-Evans
10.
J Neuroendocrinol ; 34(6): e13128, 2022 06.
Article in English | MEDLINE | ID: mdl-35583989

ABSTRACT

Behavioural flexibility is essential to adapt to a changing environment and depends on the medial prefrontal cortex (mPFC). Testosterone administration decreases behavioural flexibility. It is well known that testosterone is produced in the gonads, but testosterone is also produced in the brain, including the mPFC and other nodes of the mesocorticolimbic system. It is unclear how testosterone produced in the brain versus the gonads influences behavioural flexibility. Here, in adult male rats, we assessed the effects of the androgen synthesis inhibitor abiraterone acetate (ABI) and long-term gonadectomy (GDX) on behavioural flexibility in two paradigms. In Experiment 1, ABI but not GDX reduced the number of errors to criterion and perseverative errors in a strategy set-shifting task. In Experiment 2, with a separate cohort of rats, ABI but not GDX reduced perseverative errors in a reversal learning task. In Experiment 1, we also examined tyrosine hydroxylase immunoreactivity (TH-ir), and ABI but not GDX increased TH-ir in the mPFC. Our findings suggest that neurally-produced androgens modulate behavioural flexibility via modification of dopamine signalling in the mesocorticolimbic system. These results indicate that neurosteroids regulate executive functions and that ABI treatment for prostate cancer might affect cognition.


Subject(s)
Androgens , Tyrosine 3-Monooxygenase , Androgens/pharmacology , Animals , Male , Prefrontal Cortex/physiology , Rats , Reversal Learning , Testosterone/physiology
11.
J Neuroendocrinol ; 34(6): e13151, 2022 06.
Article in English | MEDLINE | ID: mdl-35608024

ABSTRACT

Traumatic brain injury (TBI) is a serious health concern and a leading cause of death. Emerging evidence strongly suggests that steroid hormones (estrogens, androgens, and progesterone) modulate TBI outcomes by regulating inflammation, oxidative stress, free radical production, and extracellular calcium levels. Despite this growing body of evidence on steroid-mediated neuroprotection, very little is known about the local synthesis of these steroids following injury. Here, we examine the effect of TBI on local neurosteroid levels around the site of injury and in plasma in adult male and female zebra finches. Using ultrasensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined estrogens, androgens, and progesterone in the entopallium and plasma of injured and uninjured animals. Three days after injury, elevated levels of 17ß-estradiol (E2 ), estrone (E1 ), and testosterone (T) were detected near injured brain tissue with a corresponding increase in E2 also detected in plasma. Taken together, these results provide further evidence that TBI alters neurosteroid levels and are consistent with studies showing that neurosteroids provide neuroprotection following injury.


Subject(s)
Brain Injuries, Traumatic , Finches , Neurosteroids , Androgens , Animals , Brain , Chromatography, Liquid , Estradiol , Estrogens , Female , Finches/physiology , Male , Progesterone , Steroids , Tandem Mass Spectrometry
12.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34864986

ABSTRACT

Glucocorticoids (GCs) are critical modulators of the immune system. The hypothalamic-pituitary-adrenal (HPA) axis regulates circulating GC levels and is stimulated by endotoxins. Lymphoid organs also produce GCs; however, it is not known how lymphoid GC levels are regulated in response to endotoxins. We assessed whether an acute challenge of lipopolysaccharide (LPS) increases lymphoid levels of progesterone and GCs, and expression of steroidogenic enzymes and key HPA axis components (eg, corticotropin-releasing hormone [CRH], adrenocorticotropic hormone [ACTH]). We administered LPS (50 µg/kg intraperitoneally) or vehicle control to male and female C57BL/6J neonatal (postnatal day [PND] 5) and adult (PND90) mice and collected blood, bone marrow, thymus, and spleen 4 hours later. We measured progesterone, 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone via liquid chromatography-tandem mass spectrometry. We measured gene expression of key steroidogenic enzymes (Cyp11b1, Hsd11b1, and Hsd11b2) and HPA axis components (Crh, Crhr1, Pomc, and Mc2r) via quantitative polymerase chain reaction. At PND5, LPS induced greater increases in steroid levels in lymphoid organs than in blood. In contrast, at PND90, LPS induced greater increases in steroid levels in blood than in lymphoid organs. Steroidogenic enzyme transcripts were present in all lymphoid organs, and LPS altered steroidogenic enzyme expression predominantly in the spleen. Lastly, we detected transcripts of key HPA axis components in all lymphoid organs, and there was an effect of LPS in the spleen. Taken together, these data suggest that LPS regulates GC production by lymphoid organs, similar to its effects on the adrenal glands, and the effects of LPS might be mediated by local expression of CRH and ACTH.


Subject(s)
Bone Marrow/metabolism , Glucocorticoids/biosynthesis , Lipopolysaccharides/pharmacology , Spleen/metabolism , Thymus Gland/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Animals , Animals, Newborn/metabolism , Bone Marrow/drug effects , Bone Marrow/enzymology , Corticosterone/analysis , Corticosterone/blood , Female , Glucocorticoids/blood , Hypothalamo-Hypophyseal System/drug effects , Immunity, Innate/drug effects , Male , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System/drug effects , RNA, Messenger/analysis , Receptors, Corticotropin-Releasing Hormone/genetics , Spleen/drug effects , Spleen/enzymology , Steroid 11-beta-Hydroxylase/genetics , Thymus Gland/drug effects , Thymus Gland/enzymology
13.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R802-R811, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34612088

ABSTRACT

Hospitalized preterm infants experience painful medical procedures. Oral sucrose is the nonpharmacological standard of care for minor procedural pain relief. Infants are treated with numerous doses of sucrose, raising concerns about potential long-term effects. The objective of this study was to determine the long-term effects of neonatal oral sucrose treatment on growth and liver metabolism in a mouse model. Neonatal female and male mice were randomly assigned to one of two oral treatments (n = 7-10 mice/group/sex): sterile water or sucrose. Pups were treated 10 times/day for the first 6 days of life with 0.2 mg/g body wt of respective treatments (24% solution; 1-4 µL/dose) to mimic what is given to preterm infants. Mice were weaned at age 3 wk onto a control diet and fed until age 16 wk. Sucrose-treated female and male mice gained less weight during the treatment period and were smaller at weaning than water-treated mice (P ≤ 0.05); no effect of sucrose treatment on body weight was observed at adulthood. However, adult sucrose-treated female mice had smaller tibias and lower serum insulin-like growth factor-1 than adult water-treated female mice (P ≤ 0.05); these effects were not observed in males. Lower liver S-adenosylmethionine, phosphocholine, and glycerophosphocholine were observed in adult sucrose-treated compared with water-treated female and male mice (P ≤ 0.05). Sucrose-treated female, but not male, mice had lower liver free choline and higher liver betaine compared with water-treated female mice (P < 0.01). Our findings suggest that repeated neonatal sucrose treatment has long-term sex-specific effects on growth and liver methionine and choline metabolism.


Subject(s)
Analgesics/toxicity , Choline/metabolism , Glucocorticoids/metabolism , Liver/drug effects , Sucrose/toxicity , Tibia/drug effects , Weight Gain/drug effects , Administration, Oral , Age Factors , Analgesics/administration & dosage , Animals , Animals, Newborn , Betaine/metabolism , Female , Glycerylphosphorylcholine/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Phosphorylcholine/metabolism , S-Adenosylmethionine/metabolism , Sex Factors , Sucrose/administration & dosage , Tibia/growth & development
14.
J Endocrinol ; 251(3): 161-180, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34582358

ABSTRACT

Maternal diets can have dramatic effects on the physiology, metabolism, and behaviour of offspring that persist into adulthood. However, the effects of maternal sucrose consumption on offspring remain unclear. Here, female rats were fed either a sucrose diet with a human-relevant level of sucrose (25% of kcal) or a macronutrient-matched, isocaloric control diet before, during, and after pregnancy. After weaning, all offspring were fed a standard low-sucrose rodent chow. We measured indicators of metabolism (weight, adipose, glucose tolerance, and liver lipids) during development and adulthood (16-24 weeks). We also measured food preference and motivation for sugar rewards in adulthood. Finally, in brain regions regulating these behaviours, we measured steroids and transcripts for steroidogenic enzymes, steroid receptors, and dopamine receptors. In male offspring, maternal sucrose intake decreased body mass and visceral adipose tissue, increased preference for high-sucrose and high-fat diets, increased motivation for sugar rewards, and decreased mRNA levels of Cyp17a1 (an androgenic enzyme) in the nucleus accumbens. In female offspring, maternal sucrose intake increased basal corticosterone levels. These data demonstrate the enduring, diverse, and sex-specific effects of maternal sucrose consumption on offspring phenotype.


Subject(s)
Behavior, Animal/drug effects , Brain/metabolism , Prenatal Nutritional Physiological Phenomena , Steroids/metabolism , Sucrose/administration & dosage , Animal Feed , Animals , Biomarkers , Choice Behavior/drug effects , Diet , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Gene Expression Regulation/drug effects , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Rats , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism
15.
Front Neural Circuits ; 15: 716605, 2021.
Article in English | MEDLINE | ID: mdl-34393727

ABSTRACT

Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.


Subject(s)
Aggression/physiology , Neuroendocrine Cells/metabolism , Neurosteroids/metabolism , Seasons , Territoriality , Aggression/psychology , Animals , Birds , Fishes
16.
J Endocrinol ; 251(2): 137-148, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34432644

ABSTRACT

Glucocorticoids (GCs) are secreted by the adrenal glands and locally produced by lymphoid organs. Adrenal GC secretion at baseline and in response to stressors is greatly reduced during the stress hyporesponsive period (SHRP) in neonatal mice (postnatal day (PND) 2-12). It is unknown whether lymphoid GC production increases in response to stressors during the SHRP. Here, we administered an acute stressor (isoflurane anesthesia) to mice before, during, and after the SHRP and measured systemic and local GCs via mass spectrometry. We administered isoflurane, vehicle control (oxygen), or neither (baseline) at PND 1, 5, 9, or 13 and measured progesterone and six GCs in blood, bone marrow, thymus, and spleen. At PND1, blood and lymphoid GC levels were high and did not respond to stress. At PND5, blood GC levels were very low and increased slightly after stress, while lymphoid GC levels were also low but increased greatly after stress. At PND9, blood and lymphoid GC levels were similar at baseline and increased similarly after stress. At PND13, blood GC levels were higher than lymphoid GC levels at baseline, and blood GC levels showed a greater response to stress. These data demonstrate the remarkable plasticity of GC physiology during the postnatal period, show that local steroid levels do not reflect systemic steroid levels, provide insight into the SHRP, and identify a potential mechanism by which early-life stressors can alter immunity in adulthood.


Subject(s)
Aging/metabolism , Corticosterone/biosynthesis , Lymphoid Tissue/metabolism , Progesterone/biosynthesis , Stress, Physiological , Animals , Bone Marrow/metabolism , Corticosterone/blood , Female , Isoflurane , Male , Mice, Inbred C57BL , Progesterone/blood , Random Allocation
17.
Anal Chem ; 93(14): 5735-5743, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33784068

ABSTRACT

Despite the vast amount of metabolic information that can be captured in untargeted metabolomics, many biological applications are looking for a biology-driven metabolomics platform that targets a set of metabolites that are relevant to the given biological question. Steroids are a class of important molecules that play critical roles in many physiological systems and diseases. Besides known steroids, there are a large number of unknown steroids that have not been reported in the literature. The ability to rapidly detect and quantify both known and unknown steroid molecules in a biological sample can greatly accelerate a broad range of steroid-focused life science research. This work describes the development and application of SteroidXtract, a convolutional neural network (CNN)-based bioinformatics tool that can recognize steroid molecules in mass spectrometry (MS)-based untargeted metabolomics using their unique tandem MS (MS2) spectral patterns. SteroidXtract was trained using a comprehensive set of standard MS2 spectra from MassBank of North America (MoNA) and an in-house steroid library. Data augmentation strategies, including intensity thresholding and Gaussian noise addition, were created and applied to minimize data overfitting caused by the limited number of standard steroid MS2 spectra. The CNN model embedded in SteroidXtract was further compared with random forest and XGBoost using nested cross-validations to demonstrate its performance. Finally, SteroidXtract was applied in several metabolomics studies to demonstrate its sensitivity, specificity, and robustness. Compared to conventional statistics-driven metabolomics data interpretation, our work offers a novel automated biology-driven approach to interpreting untargeted metabolomics data, prioritizing biologically important molecules with high throughput and sensitivity.


Subject(s)
Deep Learning , Computational Biology , Metabolomics , Steroids , Tandem Mass Spectrometry
18.
Dev Neurobiol ; 81(2): 189-206, 2021 03.
Article in English | MEDLINE | ID: mdl-33420760

ABSTRACT

Corticosterone is produced by the adrenal glands and also produced locally by other organs, such as the brain. Local levels of corticosterone in specific brain regions during development are not known. Here, we microdissected brain tissue and developed a novel liquid chromatography tandem mass spectrometry method (LC-MS/MS) to measure a panel of seven steroids (including 11-deoxycorticosterone (DOC), corticosterone, and 11-dehydrocorticosterone (DHC) in the blood, hippocampus (HPC), cerebral cortex (CC), and hypothalamus (HYP) of mice at postnatal day (PND) 5, 21, and 90. In a second cohort of mice, we measured the expression of three genes that code for steroidogenic enzymes that regulate corticosterone levels (Cyp11b1, Hsd11b1, and Hsd11b2) in the HPC, CC, and HYP. There were region-specific patterns of steroid levels across development, including higher corticosterone levels in the HPC and HYP than in the blood at PND5. In contrast, corticosterone levels were higher in the blood than in all brain regions at PND21 and PND90. Brain corticosterone levels were not positively correlated with blood corticosterone levels, and correlations across brain regions increased with age. Local corticosterone levels were best predicted by local DOC levels at PND5, but by local DHC levels at PND21 and PND90. Transcripts for the three enzymes were detectable in all samples (with highest expression of Hsd11b1) and showed region-specific changes with age. These data demonstrate that individual brain regions fine-tune local levels of corticosterone during early development and that coupling of glucocorticoid levels across regions increases with age.


Subject(s)
Corticosterone , Glucocorticoids , Steroids/chemistry , Animals , Brain/physiology , Chromatography, Liquid , Mice , Steroids/metabolism , Tandem Mass Spectrometry
19.
J Neuroendocrinol ; 33(1): e12922, 2021 01.
Article in English | MEDLINE | ID: mdl-33314446

ABSTRACT

Steroids are secreted by the gonads and adrenal glands into the blood to modulate neurophysiology and behaviour. In addition, the brain can metabolise circulating steroids and synthesise steroids de novo. Songbirds show high levels of neurosteroid synthesis. In the present study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of 10 steroids in whole blood, plasma and microdissected brain tissue (1-2 mg) of song sparrows. Our assay is highly accurate, precise, specific and sensitive. Moreover, the liquid-liquid extraction is fast, simple and effective. We quantified steroids in the blood and brain of wild male song sparrows in both breeding and non-breeding seasons. As expected, systemic androgen levels were higher in the breeding season than in the non-breeding season. Brain androgens were detectable only in the breeding season; androstenedione and 5α-dihydrotestosterone levels were up to 20-fold higher in specific brain regions than in blood. Oestrogens were not detectable in blood in both seasons. Oestrone and 17ß-oestradiol were detectable in brain in the breeding season only (up to 1.4 ng g-1 combined). Progesterone levels in several regions were higher in the non-breeding season than the breeding season, despite the lack of seasonal changes in systemic progesterone. Corticosterone levels in the blood were higher in the breeding season than in the non-breeding season but showed few seasonal differences in the brain. In general, the steroid levels presented here are lower than those in previous reports using immunoassays, because of the higher specificity of mass spectrometry. We conclude that (i) brain steroid levels can differ greatly from circulating steroid levels and (ii) brain steroid levels show region-specific seasonal patterns that are not a simple reflection of circulating steroid levels. This approach using ultrasensitive LC-MS/MS is broadly applicable to other species and allows steroid profiling in microdissected brain regions.


Subject(s)
Brain/metabolism , Dehydroepiandrosterone/metabolism , Estradiol/metabolism , Estrone/metabolism , Progesterone/metabolism , Sparrows/metabolism , Animals , Chromatography, Liquid , Corticosterone/blood , Dehydroepiandrosterone/blood , Estradiol/blood , Estrone/blood , Male , Progesterone/blood , Sexual Behavior, Animal/physiology , Tandem Mass Spectrometry
20.
Brain Behav Immun Health ; 18: 100352, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988497

ABSTRACT

Glucocorticoids (GCs) regulate a myriad of physiological systems, such as the immune and nervous systems. Systemic GC levels in blood are often measured as an indicator of local GC levels in target organs. However, several extra-adrenal organs can produce and metabolize GCs locally. More sensitive and specific methods for GC analysis (i.e., mass spectrometry) allow measurement of local GC levels in small tissue samples with low GC concentrations. Consequently, is it now apparent that systemic GC levels often do not reflect local GC levels. Here, we review the use of systemic GC measurements in clinical and research settings, discuss instances where systemic GC levels do not reflect local GC levels, and present evidence that local GC levels provide useful insights, with a focus on local GC production in the thymus (immunosteroids) and brain (neurosteroids). Lastly, we suggest key areas for further research, such as the roles of immunosteroids and neurosteroids in neonatal programming and the potential clinical relevance of local GC modulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...